Araştırma Makalesi
BibTex RIS Kaynak Göster

OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION

Yıl 2021, Cilt: 26 Sayı: 3, 1021 - 1034, 31.12.2021
https://doi.org/10.17482/uumfd.878114

Öz

Tuned mass dampers (TMDs) are used to reduce dynamic vibrations of structures under environmental loads such as wind or seismic excitation. In this paper, the optimum design of nontraditional tuned mass dampers (NT-TMD) attached to a damped main structure under harmonic excitation was investigated. Unlike the traditional TMD, the damping element in NT-TMD is directly connected to the ground. In this study, the effectiveness of NT-TMD on the attenuation of vibrations on the damped main system under harmonic load is investigated. The optimum parameters of the NT-TMD are obtained by using the hybrid pattern search (HPS) technique. According to numerical results, it is seen that non-traditional TMD is more effective than traditional TMD in reducing vibration.

Kaynakça

  • 1. Amiri, G.G., Razzaghi, S.A.S. and Bagheri, A. (2011) Damage detection in plates based on pattern search and Genetic algorithms, Smart Structures and Systems, 7(2), 117-132. doi: 10.12989/sss.2011.7.2.117
  • 2. Anh, N.D. and Nguyen, N.X. (2014) Design of non-traditional dynamic vibration absorber for damped linear structures, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 45-55. doi: 10.1177/0954406213481422
  • 3. Anh, N.D., Nguyen, N.X. and Quan, N.H. (2016) Global-local approach to the design of dynamic vibration absorber for damped structures, Journal and Vibration Control, 22, 1-20. doi: 10.1177/1077546314561282
  • 4. Araz, O. (2020) Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation, Arch. Appl. Mech., 90, 523-532. doi: 10.1007/s00419-019-01623-z
  • 5. Araz, O. and Kahya, V. (2018) Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation, Journal of Structural Engineering & Applied Mechanics, 1(3), 117–27. doi:10.31462/jseam.2018.03117127
  • 6. Araz, O. and Kahya, V. (2020) Series tuned mass dampers in control of continuous railway bridges, Struct. Eng. Mech., 73(2), 133-141. doi: 10.12989/sem.2020.73.2.133
  • 7. Araz, O. and Kahya, V. (2021) Design of series tuned mass dampers for seismic control of structures using simulated annealing algorithm, Archive of Applied Mechanics, 91, 4343–4359. doi: 10.1007/s00419-021-02013-0
  • 8. Asami, T., Nishihara, O. and Baz, A.M. (2002) Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems, Journal of Vibration and Acoustics, 124, 284-295. doi: 10.1115/1.1456458
  • 9. Bagheri, A. and Amini, F. (2013) Control of structures under uniform hazard earthquake excitation via wavelet analysis and pattern search method, Structural Control & Health Monitoring, 20(5), 671-685. doi: 10.1002/stc.510
  • 10. Bakre, S.V. and Jangid, R.S. (2004) Optimum multiple tuned mass dampers for base-excited damped main system, Int. J. Struct. Stab. Dyn., 4(4), 527–542. doi: 10.1142/S0219455404001367
  • 11. Cheung, Y.L. and Wong, W.O. (2009) Design of a non-traditional dynamic vibration absorber (L), Journal of the Acoustical Society of America, 126, 564-567. doi: 10.1121/1.3158917
  • 12. Cheung, Y.L. and Wong, W.O. (2011) H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation, Journal of Sound and Vibration, 330, 1039-1044. doi: 10.1016/j.jsv.2010.10.031
  • 13. Cheung, Y.L. and Wong, W.O. (2011) H-infinity optimization of a variant design of the dynamic vibration absorber-Revisited and new results, Journal of Sound and Vibration, 330,3901-3912. doi: 10.1016/j.jsv.2011.03.027
  • 14. Dell’Elce, L., Gourc, E. and Kerschen, G. (2018) A robust equal-peak method for uncertain mechanical systems, J. Sound Vib., 414, 97-109. doi: 10.1016/j.jsv.2017.10.038
  • 15. Den Hartog, J.P. (1956) Mechanical Vibrations, McGraw-Hill, New York
  • 16. Esen, İ. and Koç, M.A. (2015) Optimization of a passive vibration absorber for a barrel using the genetic algorithm, Expert Syst. Appl., 42, 894–905. doi: 10.1016/j.eswa.2014.08.038
  • 17. Frahm, H. (1909) Device for Damped Vibration of Bodies. U.S. Patent No. 989958.
  • 18. Fujino, Y. and Abe, M. (1993) Design formulas for tuned mass dampers based on a perturbation technique, Earth. Eng. Struct. Dyn., 22(10), 833-854. doi: 10.1002/eqe.4290221002
  • 19. Jangid, R.S. (1999) Optimum multiple tuned mass dampers for base-excited undamped system, Earthq. Eng. Struct. Dyn., 28(9), 1041-1049. doi: 10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
  • 20. Kahya, V. and Araz, O. (2017) Series tuned mass dampers in train-induced vibration control of railway bridges, Structural Engineering and Mechanics, 61, 453-461. doi: 10.12989/sem.2017.61.4.453
  • 21. Kahya, V. and Araz, O. (2019) A sequential approach based design of multiple tuned mass dampers under harmonic excitation, Sigma Journal of Engineering and Natural Sciences, 37, 225-239.
  • 22. Kahya, V. and Araz, O. (2020) A simple design method for multiple tuned mass dampers in reduction of excessive vibrations of high-speed railway bridges, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 607-618. doi: 10.17341/gazimmfd.493102
  • 23. Karakaya, S. and Soykasap, O. (2009) Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm, Structural and Multidisciplinary Optimization, 39(5), 477-486. doi: 10.1007/s00158-008-0344-2
  • 24. Koc, M.A. (2020a) Implementation of a Vibration Absorbers to Euler-Bernoulli Beam and Dynamic Analysis of Moving Car, Academic Platform Journal of Engineering and Science, 8, 523-532. doi: 10.21541/apjes.662708
  • 25. Koc, M.A. (2020b) Fuzzy Logic Control of Vibrations due to Interaction One DOF Vehicle and Flexible Structure with Tuned Mass Damper, Journal of Smart Systems Suspension Research, 1, 1-10.
  • 26. Li, C. (2002) Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF, Earthquake Engineering and Structural Dynamics, 31, 897-919. doi: 10.1002/eqe.128
  • 27. Liu, K. and Liu, J. (2005) The damped dynamic vibration absorbers: revisited and new result, Journal of Sound and Vibration, 284, 1181-1189. doi: 10.1016/j.jsv.2004.08.002
  • 28. Liu, K. and Coppola, G. (2010) Optimal design of damped dynamic vibration absorber for damped primary systems, Transactions of the Canadian Society for Mechanical Engineering, 34, 119-135. doi: 10.1139/tcsme-2010-0008
  • 29. Marano, G.C. and Greco, R. (2011) Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation, Journal and Vibration Control, 17, 679-688.doi: 10.1177/1077546310365988
  • 30. Marano, G.C., Greco, R., Trentadue, F. and Chiaia, B. (2007) Constrained reliability-based optimization of linear tuned mass dampers for seismic control, Int. J. Solids Struct., 44(22-23), 7370-7388. doi: 10.1016/j.ijsolstr.2007.04.012
  • 31. Mate, N.U., Bakre, S.V. and Jaiswal, O.R. (2017) Seismic pounding response of singled-degree-of-freedom elastic and inelastic structures using passive tuned mass damper, International Journal of Civil Engineering, 15, 991-1005. doi: 10.1007/s40999-017-0178-7
  • 32. Matta, E. (2015) Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective, Earthquakes and Structures, 9(1), 73-91. doi: 10.12989/eas.2015.9.1.073
  • 33. Mrabet, E., Guedri, M., Ichchou, M.N., Ghanmi, S. and Soula, M. (2018) A new reliability based optimization of tuned mass damper parameters using energy approach, Journal and Vibration Control, 24, 153-170. doi: 10.1177/1077546316636361
  • 34. Nigdeli S.M. and Bekdas, G. (2014) Optimum tuned mass damper approach for adjacent structures, Earthquakes and Structures, 7(6), 1071-1091. doi: 10.12989/eas.2014.7.6.1071
  • 35. Ormondroyd, J. and Den Hartog, J.P. (1928) The theory of the dynamic vibration absorber, Transactions of ASME Journal of Applied Mechanics, 50, 9-22.
  • 36. Ren, M.Z. (2001) A variant design of the dynamic vibration absorber, Journal of Sound and Vibration, 245, 762-770. doi: 10.1006/jsvi.2001.3564
  • 37. Ruge, G. and Wagner, N. (2020) Design of tuned mass dampers for damped structures with uncertain excitation, Bautechnik, 97, 737-743. doi: 10.1002/bate.202000024
  • 38. Tsai, H.C. (1995) The effect of tuned-mass dampers on the seismic response of base-isolated structures, Int. J. Solids Struct., 32(8–9), 1195–1210. doi: 10.1016/0020-7683(94)00150-U
  • 39. Yazdi, H.A., Saberi, H. and Hatemi, F. (2016) Designing optimal tuned mass dampers using improved harmony search algorithm, Adv. Struct. Eng., 19(10), 1620-1636. doi: 10.1177/1369433216646018
  • 40. Yucel, M., Bekdaş, G., Nigdeli, S.M. and Sevgen, S. (2019) Estimation of optimum tuned mass damper parameters via machine learning, J. Build. Eng., 26, 100847. doi: 10.1016/j.jobe.2019.100847
  • 41. Yuan, M., Liu, K. and Sadhu, A. (2018) Simultaneous vibration suppression and energy harvesting with a non-traditional vibration absorber, Journal Intelligent Material Systems and Structures, 29, 1748-1763. doi: 10.1177/1045389X17754263
  • 42. Warburton, G.B. (1982) Optimum absorber parameters for various combinations of response and excitation parameters, Earthq. Eng. Struct. Dyn., 10(3), 381–401. doi: 10.1002/eqe.4290100304
  • 43. Wetter, M. and Polak, E. (2005) Building design optimization using a convergent pattern search algorithm with adaptive precision simulations, Energy and Buildings, 37(6), 603-612.doi: 10.1016/j.enbuild.2004.09.005
  • 44. Wong W.O. and Cheung, Y.L. (2008) Optimal design of a damped dynamic vibration absorber for vibration control of structure excited by ground motion, Engineering Structures, 30,282-286. doi: 10.1016/j.engstruct.2007.03.007

Harmonik Etki Altındaki Sönümlü Yapılar için Geleneksel Olmayan Ayarlı Kütle Sönümleyicinin Optimizasyonu

Yıl 2021, Cilt: 26 Sayı: 3, 1021 - 1034, 31.12.2021
https://doi.org/10.17482/uumfd.878114

Öz

Ayarlı kütle sönümleyiciler (AKS) rüzgâr ve sismik etkiler gibi çevresel yükler altındaki yapıların titreşimlerinin azaltılmasında kullanılmaktadır. Bu yazıda, harmonik etki altındaki sönümlü bir ana yapıya eklenen geleneksel olmayan ayarlanmış kütle sönümleyicilerin optimum tasarımı araştırılmıştır. Geleneksel AKS’den farklı olarak, sönüm elamanı direk olarak yere bağlanmaktadır. Geleneksel olmayan AKS’nin optimum parametreleri hibrit model arama tekniği kullanılarak elde edilmiştir. Numerik sonuçlar titreşim azaltılmasında geleneksel olmayana AKS’nin geleneksel AKS’ye göre daha etkili olduğu görülmektedir.

Kaynakça

  • 1. Amiri, G.G., Razzaghi, S.A.S. and Bagheri, A. (2011) Damage detection in plates based on pattern search and Genetic algorithms, Smart Structures and Systems, 7(2), 117-132. doi: 10.12989/sss.2011.7.2.117
  • 2. Anh, N.D. and Nguyen, N.X. (2014) Design of non-traditional dynamic vibration absorber for damped linear structures, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 45-55. doi: 10.1177/0954406213481422
  • 3. Anh, N.D., Nguyen, N.X. and Quan, N.H. (2016) Global-local approach to the design of dynamic vibration absorber for damped structures, Journal and Vibration Control, 22, 1-20. doi: 10.1177/1077546314561282
  • 4. Araz, O. (2020) Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation, Arch. Appl. Mech., 90, 523-532. doi: 10.1007/s00419-019-01623-z
  • 5. Araz, O. and Kahya, V. (2018) Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation, Journal of Structural Engineering & Applied Mechanics, 1(3), 117–27. doi:10.31462/jseam.2018.03117127
  • 6. Araz, O. and Kahya, V. (2020) Series tuned mass dampers in control of continuous railway bridges, Struct. Eng. Mech., 73(2), 133-141. doi: 10.12989/sem.2020.73.2.133
  • 7. Araz, O. and Kahya, V. (2021) Design of series tuned mass dampers for seismic control of structures using simulated annealing algorithm, Archive of Applied Mechanics, 91, 4343–4359. doi: 10.1007/s00419-021-02013-0
  • 8. Asami, T., Nishihara, O. and Baz, A.M. (2002) Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems, Journal of Vibration and Acoustics, 124, 284-295. doi: 10.1115/1.1456458
  • 9. Bagheri, A. and Amini, F. (2013) Control of structures under uniform hazard earthquake excitation via wavelet analysis and pattern search method, Structural Control & Health Monitoring, 20(5), 671-685. doi: 10.1002/stc.510
  • 10. Bakre, S.V. and Jangid, R.S. (2004) Optimum multiple tuned mass dampers for base-excited damped main system, Int. J. Struct. Stab. Dyn., 4(4), 527–542. doi: 10.1142/S0219455404001367
  • 11. Cheung, Y.L. and Wong, W.O. (2009) Design of a non-traditional dynamic vibration absorber (L), Journal of the Acoustical Society of America, 126, 564-567. doi: 10.1121/1.3158917
  • 12. Cheung, Y.L. and Wong, W.O. (2011) H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation, Journal of Sound and Vibration, 330, 1039-1044. doi: 10.1016/j.jsv.2010.10.031
  • 13. Cheung, Y.L. and Wong, W.O. (2011) H-infinity optimization of a variant design of the dynamic vibration absorber-Revisited and new results, Journal of Sound and Vibration, 330,3901-3912. doi: 10.1016/j.jsv.2011.03.027
  • 14. Dell’Elce, L., Gourc, E. and Kerschen, G. (2018) A robust equal-peak method for uncertain mechanical systems, J. Sound Vib., 414, 97-109. doi: 10.1016/j.jsv.2017.10.038
  • 15. Den Hartog, J.P. (1956) Mechanical Vibrations, McGraw-Hill, New York
  • 16. Esen, İ. and Koç, M.A. (2015) Optimization of a passive vibration absorber for a barrel using the genetic algorithm, Expert Syst. Appl., 42, 894–905. doi: 10.1016/j.eswa.2014.08.038
  • 17. Frahm, H. (1909) Device for Damped Vibration of Bodies. U.S. Patent No. 989958.
  • 18. Fujino, Y. and Abe, M. (1993) Design formulas for tuned mass dampers based on a perturbation technique, Earth. Eng. Struct. Dyn., 22(10), 833-854. doi: 10.1002/eqe.4290221002
  • 19. Jangid, R.S. (1999) Optimum multiple tuned mass dampers for base-excited undamped system, Earthq. Eng. Struct. Dyn., 28(9), 1041-1049. doi: 10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
  • 20. Kahya, V. and Araz, O. (2017) Series tuned mass dampers in train-induced vibration control of railway bridges, Structural Engineering and Mechanics, 61, 453-461. doi: 10.12989/sem.2017.61.4.453
  • 21. Kahya, V. and Araz, O. (2019) A sequential approach based design of multiple tuned mass dampers under harmonic excitation, Sigma Journal of Engineering and Natural Sciences, 37, 225-239.
  • 22. Kahya, V. and Araz, O. (2020) A simple design method for multiple tuned mass dampers in reduction of excessive vibrations of high-speed railway bridges, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 607-618. doi: 10.17341/gazimmfd.493102
  • 23. Karakaya, S. and Soykasap, O. (2009) Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm, Structural and Multidisciplinary Optimization, 39(5), 477-486. doi: 10.1007/s00158-008-0344-2
  • 24. Koc, M.A. (2020a) Implementation of a Vibration Absorbers to Euler-Bernoulli Beam and Dynamic Analysis of Moving Car, Academic Platform Journal of Engineering and Science, 8, 523-532. doi: 10.21541/apjes.662708
  • 25. Koc, M.A. (2020b) Fuzzy Logic Control of Vibrations due to Interaction One DOF Vehicle and Flexible Structure with Tuned Mass Damper, Journal of Smart Systems Suspension Research, 1, 1-10.
  • 26. Li, C. (2002) Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF, Earthquake Engineering and Structural Dynamics, 31, 897-919. doi: 10.1002/eqe.128
  • 27. Liu, K. and Liu, J. (2005) The damped dynamic vibration absorbers: revisited and new result, Journal of Sound and Vibration, 284, 1181-1189. doi: 10.1016/j.jsv.2004.08.002
  • 28. Liu, K. and Coppola, G. (2010) Optimal design of damped dynamic vibration absorber for damped primary systems, Transactions of the Canadian Society for Mechanical Engineering, 34, 119-135. doi: 10.1139/tcsme-2010-0008
  • 29. Marano, G.C. and Greco, R. (2011) Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation, Journal and Vibration Control, 17, 679-688.doi: 10.1177/1077546310365988
  • 30. Marano, G.C., Greco, R., Trentadue, F. and Chiaia, B. (2007) Constrained reliability-based optimization of linear tuned mass dampers for seismic control, Int. J. Solids Struct., 44(22-23), 7370-7388. doi: 10.1016/j.ijsolstr.2007.04.012
  • 31. Mate, N.U., Bakre, S.V. and Jaiswal, O.R. (2017) Seismic pounding response of singled-degree-of-freedom elastic and inelastic structures using passive tuned mass damper, International Journal of Civil Engineering, 15, 991-1005. doi: 10.1007/s40999-017-0178-7
  • 32. Matta, E. (2015) Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective, Earthquakes and Structures, 9(1), 73-91. doi: 10.12989/eas.2015.9.1.073
  • 33. Mrabet, E., Guedri, M., Ichchou, M.N., Ghanmi, S. and Soula, M. (2018) A new reliability based optimization of tuned mass damper parameters using energy approach, Journal and Vibration Control, 24, 153-170. doi: 10.1177/1077546316636361
  • 34. Nigdeli S.M. and Bekdas, G. (2014) Optimum tuned mass damper approach for adjacent structures, Earthquakes and Structures, 7(6), 1071-1091. doi: 10.12989/eas.2014.7.6.1071
  • 35. Ormondroyd, J. and Den Hartog, J.P. (1928) The theory of the dynamic vibration absorber, Transactions of ASME Journal of Applied Mechanics, 50, 9-22.
  • 36. Ren, M.Z. (2001) A variant design of the dynamic vibration absorber, Journal of Sound and Vibration, 245, 762-770. doi: 10.1006/jsvi.2001.3564
  • 37. Ruge, G. and Wagner, N. (2020) Design of tuned mass dampers for damped structures with uncertain excitation, Bautechnik, 97, 737-743. doi: 10.1002/bate.202000024
  • 38. Tsai, H.C. (1995) The effect of tuned-mass dampers on the seismic response of base-isolated structures, Int. J. Solids Struct., 32(8–9), 1195–1210. doi: 10.1016/0020-7683(94)00150-U
  • 39. Yazdi, H.A., Saberi, H. and Hatemi, F. (2016) Designing optimal tuned mass dampers using improved harmony search algorithm, Adv. Struct. Eng., 19(10), 1620-1636. doi: 10.1177/1369433216646018
  • 40. Yucel, M., Bekdaş, G., Nigdeli, S.M. and Sevgen, S. (2019) Estimation of optimum tuned mass damper parameters via machine learning, J. Build. Eng., 26, 100847. doi: 10.1016/j.jobe.2019.100847
  • 41. Yuan, M., Liu, K. and Sadhu, A. (2018) Simultaneous vibration suppression and energy harvesting with a non-traditional vibration absorber, Journal Intelligent Material Systems and Structures, 29, 1748-1763. doi: 10.1177/1045389X17754263
  • 42. Warburton, G.B. (1982) Optimum absorber parameters for various combinations of response and excitation parameters, Earthq. Eng. Struct. Dyn., 10(3), 381–401. doi: 10.1002/eqe.4290100304
  • 43. Wetter, M. and Polak, E. (2005) Building design optimization using a convergent pattern search algorithm with adaptive precision simulations, Energy and Buildings, 37(6), 603-612.doi: 10.1016/j.enbuild.2004.09.005
  • 44. Wong W.O. and Cheung, Y.L. (2008) Optimal design of a damped dynamic vibration absorber for vibration control of structure excited by ground motion, Engineering Structures, 30,282-286. doi: 10.1016/j.engstruct.2007.03.007
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Onur Araz 0000-0002-6218-0559

Volkan Kahya 0000-0003-1392-4483

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 10 Şubat 2021
Kabul Tarihi 23 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Araz, O., & Kahya, V. (2021). OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1021-1034. https://doi.org/10.17482/uumfd.878114
AMA Araz O, Kahya V. OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION. UUJFE. Aralık 2021;26(3):1021-1034. doi:10.17482/uumfd.878114
Chicago Araz, Onur, ve Volkan Kahya. “OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 1021-34. https://doi.org/10.17482/uumfd.878114.
EndNote Araz O, Kahya V (01 Aralık 2021) OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1021–1034.
IEEE O. Araz ve V. Kahya, “OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION”, UUJFE, c. 26, sy. 3, ss. 1021–1034, 2021, doi: 10.17482/uumfd.878114.
ISNAD Araz, Onur - Kahya, Volkan. “OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 1021-1034. https://doi.org/10.17482/uumfd.878114.
JAMA Araz O, Kahya V. OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION. UUJFE. 2021;26:1021–1034.
MLA Araz, Onur ve Volkan Kahya. “OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 1021-34, doi:10.17482/uumfd.878114.
Vancouver Araz O, Kahya V. OPTIMIZATION OF NON-TRADITIONAL TUNED MASS DAMPER FOR DAMPED STRUCTURES UNDER HARMONIC EXCITATION. UUJFE. 2021;26(3):1021-34.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr