Research Article
BibTex RIS Cite

FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ

Year 2021, Volume: 26 Issue: 3, 799 - 812, 31.12.2021
https://doi.org/10.17482/uumfd.969148

Abstract

İnşaat ve geoteknik projelerinin birçoğunda saha zemininin gerekli teknik ve mekanik özelliklere sahip olmaması zeminin iyileştirilmesi gerekliliğini kaçınılmaz kılmaktadır. Zemin iyileştirme ve güçlendirme yöntemleri arasında zeminin rastgele dağılımlı lifler ile güçlendirilmesinden bahsedilebilir. Bu araştırmada, laboratuvar ortamında rastgele dağılmış FRP lifleri ile güçlendirilmiş siltli kumun kayma mukavemeti, kesme kutusu deneyi ile incelenmiştir. Büyük boyutlu numunelerin daha gerçekçi olması ve davranışları zeminin sahadaki gerçek davranışıyla daha uyumlu olması nedeniyle, çalışmada, büyük ölçekli (300*300 mm) kesme kutusu deney cihazı kullanılmıştır. Zemini güçlendirmek için 30 ve 40 mm uzunluğunda lifler kullanılmıştır. Zemin-lif karışımlarında liflerin ağırlıkça yüzdeleri %0,1, 0,2, 0,3 ve 0,4 olarak alınmıştır. Liflerin ağırlık yüzdesi, liflerin ağırlığının zeminin kuru ağırlığının oranıdır. Saf zeminin sürtünme açısı 27,7 derece ve kohezyonu 15 kPa iken, güçlendirilmiş zeminin maksimum sürtünme açısı 40,7 dereceye, kohezyon ise 18 kPa'a kadar yükselmiştir. İçsel sürtünme açıları karşılaştırıldığında %47’lik bir artış görülmektedir. Deney sonuçlarından elde edilen verilerden hareketle lif içeriğinin artmasıyla zeminin kayma mukavemetinin önce arttığı ve daha sonra azaldığı gözlemlenmiştir. Lif içeriği %0,3 ve lif uzunluğu 30 mm olan karışımlarda maksimum kayma mukavemet elde edilmiştir. Dolayısıyla çalışmada optimum lif içeriği ve lif uzunluğu sırasıyla %0,3 ve 30 mm olarak elde edilmiştir.

References

  • 1. Al-Adili, A.; Azzam, R.; Spagnoli, G. ve Schrader, J. (2012) Strength of soil reinforced with fiber materials (Papyrus), Soil Mech. Found. Eng., 48(6), 241-247, doi: 10.1007/s11204-012-9154-z
  • 2. Al-Refeai, T. (1991) Behavior of granular soils reinforced with discrete randomly oriented inclusions, Geotextile and Geomembranes, 10(3), 319-333, doi:10.1016/0266-1144(91)90009-L
  • 3. ASTM D2487-11, (2011) Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D2487.htm
  • 4. ASTM D3080, (2004) Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, Available online: https://www.astm.org/Standards/D3080.htm
  • 5. ASTM D4318-17, (2016) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D4318.htm
  • 6. ASTM D422-63, (2016) Standard Test Method for Particle-Size Analysis of Soils, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D422.htm
  • 7. ASTM D698-12e2, (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D698.htm
  • 8. ASTM D854-14, (2014) Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D854
  • 9. Chegenizadeh, A. ve Nikraz, H. (2012) Performance of fiber reinforced clayey sand composite, Front. Struct. Civ. Eng., 6(2): 147–152, doi: 10.1007/s11709-012-0158-6
  • 10. Claria, J.J. ve Vettorelo, P.V. (2016) Mechanical behavior of loose sand reinforced with synthetic fibers, Soil Mech. Found. Eng., 53(1), 12-18, doi: 10.1007/s11204-016-9357-9
  • 11. Darby, J.J. (1999) Role of bonded fiber-reinforced composites in strengthening of structures. Strengthening of reinforced concrete structures Using Externally-Bonded FRP composites in structural and civil Engineering, wood head publishing, Cambridge, UK.
  • 12. Dean, R., Freitag, F. (1986) Soil Randomly Reinforced with Fibers, Journal of Geotechnical Engineering, 112_ 8_ 820-826,
  • 13. Hoare, D. (1979) Laboratory study of granular soils reinforced with randomly oriented discrete fibers, Int. Conf. on Use of Fabrics in Geotech, Paris, France, 1, pp 47-52.
  • 14. Krishna Rao, S.V ve Nasr, A.M.A. (2014) Laboratory study on the relative performance of siltysand soils reinforced with linen fiber, Geotech. Geol. Eng., 30,63–74, doi:10.1007/s10706-011-9449-2
  • 15. Kumar, R., Kanaujia, V.K.,Chandra, D. (1999) Engineerig Behaviour of Fibre-Reinforced Pond Ash and Silty Sand, Geosynthetics International, 6_ 6_ 509-518. https://doi.org/10.1680/gein.6.0162
  • 16. Li, J.; Tang, C.; Wang, D.; Pei, X. ve Shi, B. (2014) Effect of discrete fibre reinforcement on soil tensile strength, Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133–137, doi: 10.1016/j.jrmge.2014.01.003
  • 17. Nataraja, M. S., ve McManis, K. L. (1997). Strength and Deformation Properties of Soils Reinforced Fibriliated Fibers, Geosynthetics International, 1_ 65-79. https://doi.org/10.1680/gein.4.0089
  • 18. Noorzad, R.; ve Zarinkolaei, S.T.G. (2015) Comparison of mechanical properties of fiber-reinforced sand under triaxial compression and direct shear, Open Geosci., 1, 547–558, doi:10.1515/geo-2015-0041
  • 19. Ouria, A. ve Zardari, S. (2017) Effect of the length and content of fibers on the shear strength of randomly distributed fiber-reinforced soil, Journal Of Transportation Infrastructure Engineering (JTIE), Volume 3, Number 1 (9) #L0076; Page(S) 99 To 110. https://dx.doi.org/10.22075/jtie.2017.1469.1118
  • 20. Sadek, S.; Najjar, S. ve Freiha, F. (2010) Shear strength of fiber-reinforced sands, J. Geotech. Geoenviron. Eng., 136(3), 490-499, doi:10.1061/_ASCE_GT.1943-5606.0000235
  • 21. Sariosseiri, F. ve Muhunthan, B. (2009) Effect of cement treatment on geotechnical properties of some Washington State soils, Engineering Geology, 104(1-2), 119-125. doi:10.1016/j.enggeo.2008.09.003
  • 22. Shukla, S.K.; Shahin, M.A. ve Abu-Taleb, H. (2015) A note on void ratio of fibre-reinforced soils, Int. J. of Geosynth. and Ground Eng., 1(29), 1-5, doi:10.1007/s10706-012-9593-3
  • 23. Wang Y,. Guo P., Shan Sh., Yuan H ve Yuan B., (2016) Study on the strength influence mechanism of fiber reinforced expansive soil using jute,” Geotech. Geolog. Eng., vol. 34, pp. 1079, doi:10.1007/s10706-016-0028-4
  • 24. Yetimoglu, T. ve Salbas, O. (2003) A study on shear strength of sands reinforced with randomly distributed discrete fibers, Geotext. Geomembranes, 21 (2003) 103–110, doi:10.1016/S0266-1144(03)00003-7

Determination of The Shear Strength of FRP Fiber Reinforced Silty Sand Using Large Scale Direct Shear Test

Year 2021, Volume: 26 Issue: 3, 799 - 812, 31.12.2021
https://doi.org/10.17482/uumfd.969148

Abstract

In many of the construction and geotechnical projects, the fact that the soil of the project site does not have the necessary technical and mechanical properties makes the necessity of soil improvement inevitable. Among the soil improvement and reinforcement methods, the reinforcement of the soil with randomly distributed fibers can be mentioned. In this study, the shear strength of silty sand reinforced with randomly distributed FRP fibers was investigated in the laboratory using direct shear test. A large-scale (300*300 mm) direct shear test device was used in this study, as large sized specimens are more realistic and their behavior is more compatible with the actual behavior of the soil in the field. Fibers with the lengths of 30 and 40 mm were used to reinforce the soil. The weight percentages of fibers in the soil-fiber mixtures are 0.1, 0.2, 0.3 and 0.4%. The weight percent of the fibers is the ratio of the weight of the fibers to the dry weight of the soil. While the friction angle of the pure soil was 27.7 degrees and the cohesion was 15 kPa, the maximum internal friction angle of the reinforced soil increased up to 40.7 degrees and the cohesion up to 18 kPa. Comparing the internal friction angles, an increase of 47% can be observed. Considering the test results, it was observed that the shear strength of the soil first increased and then decreased with the increase in fiber content. Maximum shear strength was obtained in mixture with a fiber content of 0.3% and a fiber length of 30 mm. Therefore, in this study, optimum fiber content and fiber length were obtained as 0.3% and 30 mm, respectively.

References

  • 1. Al-Adili, A.; Azzam, R.; Spagnoli, G. ve Schrader, J. (2012) Strength of soil reinforced with fiber materials (Papyrus), Soil Mech. Found. Eng., 48(6), 241-247, doi: 10.1007/s11204-012-9154-z
  • 2. Al-Refeai, T. (1991) Behavior of granular soils reinforced with discrete randomly oriented inclusions, Geotextile and Geomembranes, 10(3), 319-333, doi:10.1016/0266-1144(91)90009-L
  • 3. ASTM D2487-11, (2011) Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D2487.htm
  • 4. ASTM D3080, (2004) Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, Available online: https://www.astm.org/Standards/D3080.htm
  • 5. ASTM D4318-17, (2016) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D4318.htm
  • 6. ASTM D422-63, (2016) Standard Test Method for Particle-Size Analysis of Soils, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D422.htm
  • 7. ASTM D698-12e2, (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D698.htm
  • 8. ASTM D854-14, (2014) Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D854
  • 9. Chegenizadeh, A. ve Nikraz, H. (2012) Performance of fiber reinforced clayey sand composite, Front. Struct. Civ. Eng., 6(2): 147–152, doi: 10.1007/s11709-012-0158-6
  • 10. Claria, J.J. ve Vettorelo, P.V. (2016) Mechanical behavior of loose sand reinforced with synthetic fibers, Soil Mech. Found. Eng., 53(1), 12-18, doi: 10.1007/s11204-016-9357-9
  • 11. Darby, J.J. (1999) Role of bonded fiber-reinforced composites in strengthening of structures. Strengthening of reinforced concrete structures Using Externally-Bonded FRP composites in structural and civil Engineering, wood head publishing, Cambridge, UK.
  • 12. Dean, R., Freitag, F. (1986) Soil Randomly Reinforced with Fibers, Journal of Geotechnical Engineering, 112_ 8_ 820-826,
  • 13. Hoare, D. (1979) Laboratory study of granular soils reinforced with randomly oriented discrete fibers, Int. Conf. on Use of Fabrics in Geotech, Paris, France, 1, pp 47-52.
  • 14. Krishna Rao, S.V ve Nasr, A.M.A. (2014) Laboratory study on the relative performance of siltysand soils reinforced with linen fiber, Geotech. Geol. Eng., 30,63–74, doi:10.1007/s10706-011-9449-2
  • 15. Kumar, R., Kanaujia, V.K.,Chandra, D. (1999) Engineerig Behaviour of Fibre-Reinforced Pond Ash and Silty Sand, Geosynthetics International, 6_ 6_ 509-518. https://doi.org/10.1680/gein.6.0162
  • 16. Li, J.; Tang, C.; Wang, D.; Pei, X. ve Shi, B. (2014) Effect of discrete fibre reinforcement on soil tensile strength, Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133–137, doi: 10.1016/j.jrmge.2014.01.003
  • 17. Nataraja, M. S., ve McManis, K. L. (1997). Strength and Deformation Properties of Soils Reinforced Fibriliated Fibers, Geosynthetics International, 1_ 65-79. https://doi.org/10.1680/gein.4.0089
  • 18. Noorzad, R.; ve Zarinkolaei, S.T.G. (2015) Comparison of mechanical properties of fiber-reinforced sand under triaxial compression and direct shear, Open Geosci., 1, 547–558, doi:10.1515/geo-2015-0041
  • 19. Ouria, A. ve Zardari, S. (2017) Effect of the length and content of fibers on the shear strength of randomly distributed fiber-reinforced soil, Journal Of Transportation Infrastructure Engineering (JTIE), Volume 3, Number 1 (9) #L0076; Page(S) 99 To 110. https://dx.doi.org/10.22075/jtie.2017.1469.1118
  • 20. Sadek, S.; Najjar, S. ve Freiha, F. (2010) Shear strength of fiber-reinforced sands, J. Geotech. Geoenviron. Eng., 136(3), 490-499, doi:10.1061/_ASCE_GT.1943-5606.0000235
  • 21. Sariosseiri, F. ve Muhunthan, B. (2009) Effect of cement treatment on geotechnical properties of some Washington State soils, Engineering Geology, 104(1-2), 119-125. doi:10.1016/j.enggeo.2008.09.003
  • 22. Shukla, S.K.; Shahin, M.A. ve Abu-Taleb, H. (2015) A note on void ratio of fibre-reinforced soils, Int. J. of Geosynth. and Ground Eng., 1(29), 1-5, doi:10.1007/s10706-012-9593-3
  • 23. Wang Y,. Guo P., Shan Sh., Yuan H ve Yuan B., (2016) Study on the strength influence mechanism of fiber reinforced expansive soil using jute,” Geotech. Geolog. Eng., vol. 34, pp. 1079, doi:10.1007/s10706-016-0028-4
  • 24. Yetimoglu, T. ve Salbas, O. (2003) A study on shear strength of sands reinforced with randomly distributed discrete fibers, Geotext. Geomembranes, 21 (2003) 103–110, doi:10.1016/S0266-1144(03)00003-7
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Saeid Zardarı 0000-0003-4326-1633

Amir Shahkar 0000-0001-6466-6993

Pegah Dadras This is me 0000-0002-8376-860X

Publication Date December 31, 2021
Submission Date July 9, 2021
Acceptance Date October 26, 2021
Published in Issue Year 2021 Volume: 26 Issue: 3

Cite

APA Zardarı, S., Shahkar, A., & Dadras, P. (2021). FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 799-812. https://doi.org/10.17482/uumfd.969148
AMA Zardarı S, Shahkar A, Dadras P. FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ. UUJFE. December 2021;26(3):799-812. doi:10.17482/uumfd.969148
Chicago Zardarı, Saeid, Amir Shahkar, and Pegah Dadras. “FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 3 (December 2021): 799-812. https://doi.org/10.17482/uumfd.969148.
EndNote Zardarı S, Shahkar A, Dadras P (December 1, 2021) FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 799–812.
IEEE S. Zardarı, A. Shahkar, and P. Dadras, “FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ”, UUJFE, vol. 26, no. 3, pp. 799–812, 2021, doi: 10.17482/uumfd.969148.
ISNAD Zardarı, Saeid et al. “FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (December 2021), 799-812. https://doi.org/10.17482/uumfd.969148.
JAMA Zardarı S, Shahkar A, Dadras P. FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ. UUJFE. 2021;26:799–812.
MLA Zardarı, Saeid et al. “FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 3, 2021, pp. 799-12, doi:10.17482/uumfd.969148.
Vancouver Zardarı S, Shahkar A, Dadras P. FRP LİFİ İLE GÜÇLENDİRİLMİŞ SİLTLİ KUMUN KAYMA MUKAVEMETİNİN BÜYÜK ÖLÇEKLİ DİREKT KESME KUTUSU DENEYİ KULLANARAK BELİRLENMESİ. UUJFE. 2021;26(3):799-812.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.