Araştırma Makalesi
BibTex RIS Kaynak Göster

Yay Kütle Sistemi İle Birleştirilmiş Fonksiyonel Olarak Derecelendirilmiş Nanokirişin Özdeğer Problemi İle Çözümü

Yıl 2021, Cilt: 26 Sayı: 3, 1097 - 1110, 31.12.2021
https://doi.org/10.17482/uumfd.980105

Öz

Nanokirişler günümüzde çok sayıda titreşim frekansı araştırmasında yaygın olarak kullanılmaktadır. Bu çalışmada, nanokirişin ucuna takılı halde bulunan buckyball ve yayın titreşim frekans analizini yapabilmek için bir özdeğer problemi kullanılmıştır. Bu özdeğer probleminde sistemin titreşim frekansları tek bir (2x2) matris kullanılarak hesaplanabilir. Bu çalışmada, nanokirişlere bağlı sensörleri analiz etmek için matematiksel bir yöntem sunulmaktadır. Bu makalede elde edilen sonuçlar literatürde yapılan titreşim frekansı çalışmaları ile uyumlu bir sonuç göstermiştir ve sonuçlar tablo ve grafiklerle sunulmuştur.

Kaynakça

  • 1. Akbaş, Ş. D., (2019) Axially Forced Vibration Analysis of Cracked a Nanorod. Journal of Computational Applied Mechanics, 50(1), 63-68. doi:10.22059/jcamech.2019.281285.392
  • 2. Akbaş, Ş. D. (2019) Longitudinal forced vibration analysis of porous a nanorod. Mühendislik Bilimleri ve Tasarım Dergisi,7 (4) , 736-743. DOI: 10.21923/jesd.553328
  • 3. Akbas, S. D. (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Advances in Nano Research, 8(4), 277–282. doi: 10.12989/ANR.2020.8.4.277.
  • 4. Alimoradzadeh, M. and Akbaş, Ş. D. (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory, European Physical Journal Plus, Vol. 136, no. 5. https://doi.org/10.1140/epjp/s13360-021-01539-0
  • 5. Aydogdu, M. (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E 41, 1651-1655. DOI:10.1016/j.physe.2009.05.014
  • 6. Civalek, Ö., Uzun, B., & Yaylı, M. Ö. (2020) Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Journal of Geosciences, 13(21), 1-9. https://doi.org/10.1007/s12517-020-06188-8
  • 7. Civalek, Ö., Demir, Ç. (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Appl. Math. Model, 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  • 8. Civalek, Ö., Akgöz, B. (2010) Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler–Bernoulli beam modeling, Sci. Iranica Trans. B: Mech. Eng., 17, 367-375.
  • 9. Eltaher, M.A., Emam, S.A. (2013) Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct, 96, 82-88. doi: 10.1016/j.compstruct.2012.09.030.
  • 10. Eringen, A. C. (1972) Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  • 11. Eringen, A. C. (1983) on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 4703–4710. https://doi.org/10.1063/1.332803
  • 12. Liu, T., Hai, M., Zhao, M. (2008) Delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge indentation of a film/substrate system, Eng. Fract. Mech. 75, 4909-4919. doi:10.1016/j.engfracmech.2008.06.021.
  • 13. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q. (2006) Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99, 73510-73518. https://doi.org/10.1063/1.2189213
  • 14. Murmu, T., Adhikari, S., Wang, C.Y. (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory, Physica E Low-dimensional Systems and Nanostructures 43(6):1276-1280. DOI:10.1016/j.physe.2011.02.017
  • 15. Murmu, T., Pradhan, S.C. (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory, Physica E, 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015.
  • 16. Mustafa Arda & Metin Aydogdu (2020) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mechanics Based Design of Structures and Machines. 1-17. doi:10.1080/15397734.2020.1728548.
  • 17. Narendar, S. (2011) Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects, Compos. Struct, 93, 3093-3103. DOI:10.1016/j.compstruct.2011.06.028
  • 18. Özgür Yaylı, M., & Erdem Çerçevik, A. (2015). Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17(6), 2907-2921.
  • 19. Pradhan, S.C., Phadikar, J.K. (2009) Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206-223. DOI:10.1016/j.jsv.2009.03.007.
  • 20. Rahmani, O., Pedram, O. (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci, 77, 55-70. DOI:10.1016/j.ijengsci.2013.12.003
  • 21. Reddy, J.N. (2007) Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci.45, 288-307. DOI:10.1016/j.ijengsci.2007.04.004
  • 22. Reddy J. N., Pang, S. D. (2008) Nonlocal continuum theories of beam for the analysis of carbon nanotubes,. Journal of Applied Physics, 103, 1-16. DOI:10.1063/1.2833431
  • 23. Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P. (2011) Exact nonlocal solution for post buckling of single-walled carbon nanotubes. Physica E, 43, 1730-1737. https://doi.org/10.1016/j.physe.2011.05.032.
  • 24. Shen, L., Shen, H.S., Zhang, C.L. (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  • 25. Thai, H.T. (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci., 52, 56-64. DOI: 10.1016/j.ijengsci.2011.11.011
  • 26. Uzun, B., Yaylı, M. Ö., & Deliktaş, B. (2019). Free vibration of FG nanobeam using a finite-element method. Micro & Nano Letters, 15(1), 35-40. doi:10.1049/mnl.2019.0273.
  • 27. Uzun, B., Civalek, Ö., & Yaylı, M. Ö. (2020). Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mechanics Based Design of Structures and Machines, 1-20. DOI: 10.1080/15397734.2020.1846560
  • 28. Uzun, B., Yaylı, M. Ö. (2020) Nonlocal vibration analysis of Ti-6Al-4V/ZrO 2 functionally graded nanobeam on elastic matrix. Arabian Journal of Geosciences 13.4, 1-10. https://doi.org/10.1007/s12517-020-5168-4
  • 29. Yayli, M.Ö. (2015) Buckling Analysis of a Rotationally Restrained Single Walled Carbon Nanotube, Acta Physica Polonica A, 127, 3, 678-683. DOI:10.24107/ijeas.252144
  • 30. Yayli, M.Ö. (2015) Stability analysis of gradient elastic microbeams with arbitrary boundary conditions, Journal of Mechanical Science and Technology, 29, 8, 3373-3380. https://doi.org/10.1007/s12206-015-0735-4
  • 31. Yayli, M.Ö. (2016). Buckling analysis of a rotationally restrained single walled carbon nanotube embedded in an elastic medium using nonlocal elasticity. International Journal of Engineering and Applied Sciences, 8(2), 40-50. DOI: 10.24107/ijeas.252144
  • 32. Yayli, M. Ö. (2017). A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mechanics of Advanced Materials and Structures, 24(6), 496-508. DOI: 10.1080/15376494.2016.1143989.
  • 33. Yaylı, M. Ö. & Yerel Kandemir, S. (2017). Bending Analysis of A Cantilever Nanobeam With End Forces By Laplace Transform. International Journal of Engineering and Applied Sciences, Volume: 9 Issue: 2, 103-111. DOI: 10.24107/ijeas.314635
  • 34. Yayli, M. Ö. (2018). Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro & Nano Letters, 13(5), 595-599. doi: 10.1049/mnl.2017.0751
  • 35. Yayli, M. Ö. (2018). Free vibration analysis of a single‐walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro & Nano Letters, 13(2), 202-206. doi: 10.1049/mnl.2017.0463
  • 36. Yaylı, M. Ö., Uzun, B., & Deliktaş, B. (2021). Buckling analysis of restrained nanobeams using strain gradient elasticity. Waves in Random and Complex Media, 1-20. DOI: 10.1080/17455030.2020.1871112
  • 37. Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M. (2008). Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481. DOI:10.1061/(ASCE)0733-9399(2008)134:6(475)

An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM

Yıl 2021, Cilt: 26 Sayı: 3, 1097 - 1110, 31.12.2021
https://doi.org/10.17482/uumfd.980105

Öz

Nanobeams are now widely used in numerous vibration frequency research. In this study, an eigenvalue problem has used to determine the vibration frequency analysis of the buckyball and spring attached to the end of the nanobeam. The vibration frequencies of the system may be discovered using a single (2x2) matrix in this eigenvalue problem. A mathematical method for analyzing sensors has attached to nanobeams is presented in this paper. The results, which is obtained in this study, has showed a result that has compatible with the flicker frequency studies conducted in the literature, and the results have presented in tables and graphics.

Kaynakça

  • 1. Akbaş, Ş. D., (2019) Axially Forced Vibration Analysis of Cracked a Nanorod. Journal of Computational Applied Mechanics, 50(1), 63-68. doi:10.22059/jcamech.2019.281285.392
  • 2. Akbaş, Ş. D. (2019) Longitudinal forced vibration analysis of porous a nanorod. Mühendislik Bilimleri ve Tasarım Dergisi,7 (4) , 736-743. DOI: 10.21923/jesd.553328
  • 3. Akbas, S. D. (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Advances in Nano Research, 8(4), 277–282. doi: 10.12989/ANR.2020.8.4.277.
  • 4. Alimoradzadeh, M. and Akbaş, Ş. D. (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory, European Physical Journal Plus, Vol. 136, no. 5. https://doi.org/10.1140/epjp/s13360-021-01539-0
  • 5. Aydogdu, M. (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E 41, 1651-1655. DOI:10.1016/j.physe.2009.05.014
  • 6. Civalek, Ö., Uzun, B., & Yaylı, M. Ö. (2020) Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Journal of Geosciences, 13(21), 1-9. https://doi.org/10.1007/s12517-020-06188-8
  • 7. Civalek, Ö., Demir, Ç. (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Appl. Math. Model, 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  • 8. Civalek, Ö., Akgöz, B. (2010) Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler–Bernoulli beam modeling, Sci. Iranica Trans. B: Mech. Eng., 17, 367-375.
  • 9. Eltaher, M.A., Emam, S.A. (2013) Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct, 96, 82-88. doi: 10.1016/j.compstruct.2012.09.030.
  • 10. Eringen, A. C. (1972) Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  • 11. Eringen, A. C. (1983) on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 4703–4710. https://doi.org/10.1063/1.332803
  • 12. Liu, T., Hai, M., Zhao, M. (2008) Delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge indentation of a film/substrate system, Eng. Fract. Mech. 75, 4909-4919. doi:10.1016/j.engfracmech.2008.06.021.
  • 13. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q. (2006) Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99, 73510-73518. https://doi.org/10.1063/1.2189213
  • 14. Murmu, T., Adhikari, S., Wang, C.Y. (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory, Physica E Low-dimensional Systems and Nanostructures 43(6):1276-1280. DOI:10.1016/j.physe.2011.02.017
  • 15. Murmu, T., Pradhan, S.C. (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory, Physica E, 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015.
  • 16. Mustafa Arda & Metin Aydogdu (2020) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mechanics Based Design of Structures and Machines. 1-17. doi:10.1080/15397734.2020.1728548.
  • 17. Narendar, S. (2011) Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects, Compos. Struct, 93, 3093-3103. DOI:10.1016/j.compstruct.2011.06.028
  • 18. Özgür Yaylı, M., & Erdem Çerçevik, A. (2015). Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17(6), 2907-2921.
  • 19. Pradhan, S.C., Phadikar, J.K. (2009) Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206-223. DOI:10.1016/j.jsv.2009.03.007.
  • 20. Rahmani, O., Pedram, O. (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci, 77, 55-70. DOI:10.1016/j.ijengsci.2013.12.003
  • 21. Reddy, J.N. (2007) Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci.45, 288-307. DOI:10.1016/j.ijengsci.2007.04.004
  • 22. Reddy J. N., Pang, S. D. (2008) Nonlocal continuum theories of beam for the analysis of carbon nanotubes,. Journal of Applied Physics, 103, 1-16. DOI:10.1063/1.2833431
  • 23. Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P. (2011) Exact nonlocal solution for post buckling of single-walled carbon nanotubes. Physica E, 43, 1730-1737. https://doi.org/10.1016/j.physe.2011.05.032.
  • 24. Shen, L., Shen, H.S., Zhang, C.L. (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  • 25. Thai, H.T. (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci., 52, 56-64. DOI: 10.1016/j.ijengsci.2011.11.011
  • 26. Uzun, B., Yaylı, M. Ö., & Deliktaş, B. (2019). Free vibration of FG nanobeam using a finite-element method. Micro & Nano Letters, 15(1), 35-40. doi:10.1049/mnl.2019.0273.
  • 27. Uzun, B., Civalek, Ö., & Yaylı, M. Ö. (2020). Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mechanics Based Design of Structures and Machines, 1-20. DOI: 10.1080/15397734.2020.1846560
  • 28. Uzun, B., Yaylı, M. Ö. (2020) Nonlocal vibration analysis of Ti-6Al-4V/ZrO 2 functionally graded nanobeam on elastic matrix. Arabian Journal of Geosciences 13.4, 1-10. https://doi.org/10.1007/s12517-020-5168-4
  • 29. Yayli, M.Ö. (2015) Buckling Analysis of a Rotationally Restrained Single Walled Carbon Nanotube, Acta Physica Polonica A, 127, 3, 678-683. DOI:10.24107/ijeas.252144
  • 30. Yayli, M.Ö. (2015) Stability analysis of gradient elastic microbeams with arbitrary boundary conditions, Journal of Mechanical Science and Technology, 29, 8, 3373-3380. https://doi.org/10.1007/s12206-015-0735-4
  • 31. Yayli, M.Ö. (2016). Buckling analysis of a rotationally restrained single walled carbon nanotube embedded in an elastic medium using nonlocal elasticity. International Journal of Engineering and Applied Sciences, 8(2), 40-50. DOI: 10.24107/ijeas.252144
  • 32. Yayli, M. Ö. (2017). A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mechanics of Advanced Materials and Structures, 24(6), 496-508. DOI: 10.1080/15376494.2016.1143989.
  • 33. Yaylı, M. Ö. & Yerel Kandemir, S. (2017). Bending Analysis of A Cantilever Nanobeam With End Forces By Laplace Transform. International Journal of Engineering and Applied Sciences, Volume: 9 Issue: 2, 103-111. DOI: 10.24107/ijeas.314635
  • 34. Yayli, M. Ö. (2018). Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro & Nano Letters, 13(5), 595-599. doi: 10.1049/mnl.2017.0751
  • 35. Yayli, M. Ö. (2018). Free vibration analysis of a single‐walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro & Nano Letters, 13(2), 202-206. doi: 10.1049/mnl.2017.0463
  • 36. Yaylı, M. Ö., Uzun, B., & Deliktaş, B. (2021). Buckling analysis of restrained nanobeams using strain gradient elasticity. Waves in Random and Complex Media, 1-20. DOI: 10.1080/17455030.2020.1871112
  • 37. Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M. (2008). Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481. DOI:10.1061/(ASCE)0733-9399(2008)134:6(475)
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Togay Küpeli 0000-0002-5921-8667

Yakup Harun Çavuş 0000-0002-6607-9650

Büşra Uzun 0000-0002-7636-7170

Mustafa Özgür Yaylı 0000-0003-2231-170X

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 7 Ağustos 2021
Kabul Tarihi 8 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Küpeli, T., Çavuş, Y. H., Uzun, B., Yaylı, M. Ö. (2021). An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1097-1110. https://doi.org/10.17482/uumfd.980105
AMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. Aralık 2021;26(3):1097-1110. doi:10.17482/uumfd.980105
Chicago Küpeli, Togay, Yakup Harun Çavuş, Büşra Uzun, ve Mustafa Özgür Yaylı. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 1097-1110. https://doi.org/10.17482/uumfd.980105.
EndNote Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ (01 Aralık 2021) An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1097–1110.
IEEE T. Küpeli, Y. H. Çavuş, B. Uzun, ve M. Ö. Yaylı, “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM”, UUJFE, c. 26, sy. 3, ss. 1097–1110, 2021, doi: 10.17482/uumfd.980105.
ISNAD Küpeli, Togay vd. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 1097-1110. https://doi.org/10.17482/uumfd.980105.
JAMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. 2021;26:1097–1110.
MLA Küpeli, Togay vd. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 1097-10, doi:10.17482/uumfd.980105.
Vancouver Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. 2021;26(3):1097-110.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr