Araştırma Makalesi
BibTex RIS Kaynak Göster

Düz ve Bükümlü Plakaların Büküm Açısına Bağlı Modal Analizi

Yıl 2022, Cilt: 27 Sayı: 1, 403 - 418, 30.04.2022
https://doi.org/10.17482/uumfd.1009101

Öz

İzotropik ince plakaların dinamik özelliklerinden biri olan doğal frekans üzerinde bükümlü açı ve sınır koşulu farklılıklarının etkisi araştırılmıştır. Düz ve bükümlü yapıların modal analizleri tek ve çift tarafı sabit sınır koşulları altında ANSYS ile yapılmıştır. Yapıların serbest titreşim sonuçlarının validasyonu Solidworks ile yapılmıştır. Her yapının ilk beş doğal frekansı elde edilmiş ve boyutsuz doğal frekans parametreleri cinsinden değerler tablo ve grafiklerle yorumlanmıştır. Tek tarafı sabit sınır koşulu için ilk beş doğal frekansta büküm açısındaki artışa bağlı olarak hem bir artış hem de bir azalma gözlemlenebilirken, çift taraflı sabit durumda büküm açısındaki artışın doğal frekanslar üzerindeki etkisi yüksek katlanmış açı değerlerinde çok daha azdır. Büküm açısı - boyutsuz doğal frekans grafiklerindeki ani değişimlerin sebebinin mode şekli değişimi olduğu görülmektedir.

Kaynakça

  • 1. Bahrami, S., Shirmohammadi, F. and Saadatpour, M.M. (2017) Vibration analysis of thin shallow shells using spectral element method. Applied Mathematical Modelling, 44, 470– 480. doi: 10.1016/j.apm.2017.02.001
  • 2. Eisenberger, M. and Deutsch, A. (2019) Solution of thin rectangular plate vibrations for all combinations of boundary conditions. Journal of Sound and Vibration, 452, 1–12. doi:10.1016/j.jsv.2019.03.024
  • 3. Gonenli, C. and Das, O. (2021) Effect of crack location on buckling and dynamic stability in plate frame structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(6), 311. doi:10.1007/s40430-021-03032-2
  • 4. Gonenli, C., Ozturk, H. and Das, O. (2021) Effect of crack on free vibration of a pre-stressed curved plate. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440622199486. doi:10.1177/0954406221994869
  • 5. Guha Niyogi, A., Laha, M.K. and Sinha, P.K. (1999) Finite element vibration analysis of laminated composite folded plate structures. Shock and Vibration, 6(5-6), 273-283. doi: 10.1155/1999/354234
  • 6. Guo, X., Zhang, Y., Zhang, W. and Sun, L. (2019) Theoretical and experimental investigation on the nonlinear vibration behavior of Z-shaped folded plates with inner resonance. Engineering Structures, 182, 123-140. doi:10.1016/j.engstruct.2018.12.066
  • 7. Huang, C.S., Lee, M.C. and Chang, M.J. (2018) Vibration and Buckling Analysis of Internally Cracked Square Plates by the MLS-Ritz Approach. International Journal of Structural Stability and Dynamics, 18(09), 1850105. doi:10.1142/S0219455418501055
  • 8. Kumar, A., Singha, M.K. and Tiwari, V. (2017) Nonlinear bending and vibration analyses of quadrilateral composite plates. Thin-Walled Structures, 113, 170–180. doi:10.1016/j.tws.2017.01.011
  • 9. Kumari, E. and Saxena, D. (2021) Buckling analysis of folded structures. Materials Today: Proceedings, 43, 1421-1430. doi:10.1016/j.matpr.2020.09.179
  • 10. Lee, S.Y., Wooh, S.C. and Yhim, S.S. (2004) Dynamic behavior of folded composite plates analyzed by the third order plate theory. International Journal of Solids and Structures, 41(7), 1879-1892. doi:10.1016/j.ijsolstr.2003.11.026
  • 11. Li, R., Wang, B., Li, G. and Tian, B. (2016) Hamiltonian system-based analytic modeling of the free rectangular thin plates’ free vibration. Applied Mathematical Modelling, 40(2), 984– 992. doi:10.1016/j.apm.2015.06.019
  • 12. Li, R., Wang, P., Yang, Z., Yang, J. and Tong, L. (2018) On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space. Applied Mathematical Modelling, 53, 310–318. doi:10.1016/j.apm.2017.09.011
  • 13. Liu, W.H. and Huang, C.C. (1992). Vibration analysis of folded plates. Journal of Sound and Vibration, 157(1), 123-137. doi:10.1016/0022-460X(92)90570-N
  • 14. Meyer, C. and Scordelis, A.C. (1971). Analysis of curved folded plate structures. Journal of the Structural Division, 97(10). doi:10.1061/JSDEAG.0003020
  • 15. Mohammadi, H. and Setoodeh, A.R. (2019) FSDT-Based isogeometric analysis for free vibration behavior of functionally graded skew folded plates. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44, 841-863. doi:10.1007/s40997- 019-00320-0
  • 16. Ozturk, H. (2011) In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elements in Analysis and Design, 47(3), 229–236. doi:10.1016/j.finel.2010.10.003
  • 17. Petyt, M. (2015) Introduction to finite element vibration analysis, Cambridge University Press, UK.
  • 18. Pramanik, S., Das, S. and Niyogi, A.G. (2021) Free vibration and buckling analysis of stiffened sandwich plates with repeated fold. J. Inst. Eng. India Ser. C, 102(1), 87-98. doi:10.1007/s40032-020-00627-x
  • 19. Robeller, C., Gamerro, J. and Weinand, Y. (2017) A double-layered timber folded plate structure. Journal of the Association for Shell and Spatial Structures, 58(4), 295-314. doi:10.20898/j.iass.2017.194.864
  • 20. Roche, S., Mattoni, G. and Weinand, Y. (2015) Rotational stiffness at ridges of timber foldedplate structures. International Journal of Space Structures, 30(2), 153-167. doi:10.1260/0266-3511.30.2.153
  • 21. Shell181 Element Description (2021). 4-node Structural Shell. Url: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SHELL181.html (Access Date: 10.10.2021)
  • 22. Soleimani, H., Goudarzi, T. and Aghdam, M.M. (2021) Advanced structural modeling of a fold in Origami/Kirigami inspired structures. Thin-Walled Structures, 161, 107406. doi:10.1016/j.tws.2020.107406
  • 23. Vescovini, R. and Dozio, L.A. (2016) Variable-kinematic model for variable stiffness plates: vibration and buckling analysis, Composite Structures, 142. doi:15–26. 10.1016/j.compstruct.2016.01.068

FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES

Yıl 2022, Cilt: 27 Sayı: 1, 403 - 418, 30.04.2022
https://doi.org/10.17482/uumfd.1009101

Öz

The effect of folded angle and boundary condition differences on the natural frequency, which is one of the dynamic characteristics of isotropic thin plates, is investigated. Modal analyzes of flat and folded structures are performed with ANSYS under cantilever and two-side-fixed boundary conditions. The validation of the free vibration results of the structures is performed with Solidworks. The first five natural frequencies of each structure are obtained, and the values in terms of non-dimensional natural frequency parameters are interpreted with the tables and graphics. While both an increase and a decrease can be observed depending on the increase in the folded angle in the first five natural frequencies for the cantilever boundary condition, the effect of the increase in the folded angle on the natural frequencies in the two-sided-fixed structures is much less in the higher folded angle values. It is seen that the reason for the sudden changes in the folded angle - non-dimensional natural frequency graphs is the mode shape change.

Kaynakça

  • 1. Bahrami, S., Shirmohammadi, F. and Saadatpour, M.M. (2017) Vibration analysis of thin shallow shells using spectral element method. Applied Mathematical Modelling, 44, 470– 480. doi: 10.1016/j.apm.2017.02.001
  • 2. Eisenberger, M. and Deutsch, A. (2019) Solution of thin rectangular plate vibrations for all combinations of boundary conditions. Journal of Sound and Vibration, 452, 1–12. doi:10.1016/j.jsv.2019.03.024
  • 3. Gonenli, C. and Das, O. (2021) Effect of crack location on buckling and dynamic stability in plate frame structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(6), 311. doi:10.1007/s40430-021-03032-2
  • 4. Gonenli, C., Ozturk, H. and Das, O. (2021) Effect of crack on free vibration of a pre-stressed curved plate. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440622199486. doi:10.1177/0954406221994869
  • 5. Guha Niyogi, A., Laha, M.K. and Sinha, P.K. (1999) Finite element vibration analysis of laminated composite folded plate structures. Shock and Vibration, 6(5-6), 273-283. doi: 10.1155/1999/354234
  • 6. Guo, X., Zhang, Y., Zhang, W. and Sun, L. (2019) Theoretical and experimental investigation on the nonlinear vibration behavior of Z-shaped folded plates with inner resonance. Engineering Structures, 182, 123-140. doi:10.1016/j.engstruct.2018.12.066
  • 7. Huang, C.S., Lee, M.C. and Chang, M.J. (2018) Vibration and Buckling Analysis of Internally Cracked Square Plates by the MLS-Ritz Approach. International Journal of Structural Stability and Dynamics, 18(09), 1850105. doi:10.1142/S0219455418501055
  • 8. Kumar, A., Singha, M.K. and Tiwari, V. (2017) Nonlinear bending and vibration analyses of quadrilateral composite plates. Thin-Walled Structures, 113, 170–180. doi:10.1016/j.tws.2017.01.011
  • 9. Kumari, E. and Saxena, D. (2021) Buckling analysis of folded structures. Materials Today: Proceedings, 43, 1421-1430. doi:10.1016/j.matpr.2020.09.179
  • 10. Lee, S.Y., Wooh, S.C. and Yhim, S.S. (2004) Dynamic behavior of folded composite plates analyzed by the third order plate theory. International Journal of Solids and Structures, 41(7), 1879-1892. doi:10.1016/j.ijsolstr.2003.11.026
  • 11. Li, R., Wang, B., Li, G. and Tian, B. (2016) Hamiltonian system-based analytic modeling of the free rectangular thin plates’ free vibration. Applied Mathematical Modelling, 40(2), 984– 992. doi:10.1016/j.apm.2015.06.019
  • 12. Li, R., Wang, P., Yang, Z., Yang, J. and Tong, L. (2018) On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space. Applied Mathematical Modelling, 53, 310–318. doi:10.1016/j.apm.2017.09.011
  • 13. Liu, W.H. and Huang, C.C. (1992). Vibration analysis of folded plates. Journal of Sound and Vibration, 157(1), 123-137. doi:10.1016/0022-460X(92)90570-N
  • 14. Meyer, C. and Scordelis, A.C. (1971). Analysis of curved folded plate structures. Journal of the Structural Division, 97(10). doi:10.1061/JSDEAG.0003020
  • 15. Mohammadi, H. and Setoodeh, A.R. (2019) FSDT-Based isogeometric analysis for free vibration behavior of functionally graded skew folded plates. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44, 841-863. doi:10.1007/s40997- 019-00320-0
  • 16. Ozturk, H. (2011) In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elements in Analysis and Design, 47(3), 229–236. doi:10.1016/j.finel.2010.10.003
  • 17. Petyt, M. (2015) Introduction to finite element vibration analysis, Cambridge University Press, UK.
  • 18. Pramanik, S., Das, S. and Niyogi, A.G. (2021) Free vibration and buckling analysis of stiffened sandwich plates with repeated fold. J. Inst. Eng. India Ser. C, 102(1), 87-98. doi:10.1007/s40032-020-00627-x
  • 19. Robeller, C., Gamerro, J. and Weinand, Y. (2017) A double-layered timber folded plate structure. Journal of the Association for Shell and Spatial Structures, 58(4), 295-314. doi:10.20898/j.iass.2017.194.864
  • 20. Roche, S., Mattoni, G. and Weinand, Y. (2015) Rotational stiffness at ridges of timber foldedplate structures. International Journal of Space Structures, 30(2), 153-167. doi:10.1260/0266-3511.30.2.153
  • 21. Shell181 Element Description (2021). 4-node Structural Shell. Url: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SHELL181.html (Access Date: 10.10.2021)
  • 22. Soleimani, H., Goudarzi, T. and Aghdam, M.M. (2021) Advanced structural modeling of a fold in Origami/Kirigami inspired structures. Thin-Walled Structures, 161, 107406. doi:10.1016/j.tws.2020.107406
  • 23. Vescovini, R. and Dozio, L.A. (2016) Variable-kinematic model for variable stiffness plates: vibration and buckling analysis, Composite Structures, 142. doi:15–26. 10.1016/j.compstruct.2016.01.068
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Can Gönenli 0000-0001-9163-1569

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 13 Ekim 2021
Kabul Tarihi 23 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 27 Sayı: 1

Kaynak Göster

APA Gönenli, C. (2022). FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 403-418. https://doi.org/10.17482/uumfd.1009101
AMA Gönenli C. FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES. UUJFE. Nisan 2022;27(1):403-418. doi:10.17482/uumfd.1009101
Chicago Gönenli, Can. “FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 1 (Nisan 2022): 403-18. https://doi.org/10.17482/uumfd.1009101.
EndNote Gönenli C (01 Nisan 2022) FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 403–418.
IEEE C. Gönenli, “FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES”, UUJFE, c. 27, sy. 1, ss. 403–418, 2022, doi: 10.17482/uumfd.1009101.
ISNAD Gönenli, Can. “FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (Nisan 2022), 403-418. https://doi.org/10.17482/uumfd.1009101.
JAMA Gönenli C. FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES. UUJFE. 2022;27:403–418.
MLA Gönenli, Can. “FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 1, 2022, ss. 403-18, doi:10.17482/uumfd.1009101.
Vancouver Gönenli C. FOLDED ANGLE DEPENDENT MODAL ANALYSIS OF THE FLAT AND FOLDED PLATES. UUJFE. 2022;27(1):403-18.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr