Research Article
BibTex RIS Cite

A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION

Year 2022, Volume: 27 Issue: 1, 467 - 486, 30.04.2022
https://doi.org/10.17482/uumfd.1073184

Abstract

The direct method is a finite element approach used in soil-structure interaction (SSI) analysis. The main assumption of this method is the transformation of the infinite soil domain to the truncated soil domain applying different boundary conditions. The objective of this study is to examine the efficiency of The Perfectly Matched Layers (PML) for SSI analysis. For this purpose, the soil-structure problem with different planar-sized truncated soil domains with constrained boundary (CB) and non-reflecting boundary (NRB) were analyzed using 3 different soil stiffness. The results obtained from these analyses were compared with PML and fixed-base reference model results. According to the findings, if the truncated soil domain planar sizes are larger than 10 times the foundation widths for traditional boundary conditions, the effect of the soil domain size is negligible. When the foundation soil stiffness is assumed to be medium and hard, it was observed that PML results are very close to other boundary condition model results, but greater differences were observed in results between PML and other models for soft foundation soil conditions. From the parametrical study, it was concluded that PML provides superiority in terms of computational cost and practical application.

References

  • 1. American Society of Civil Engineers (ASCE) (2010) Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Reston, Virginia.
  • 2. Ates, S., Atmaca, B., Yildirim, E. and Demiroz, N.A. (2013) Effects of soil-structure interaction on construction stage analysis of highway bridges, Computers and Concrete, 12(2), 169-186. doi.org/10.12989/cac.2013.12.2.169
  • 3. Basu, U. and Chopra, A.K. (2003) Perfectly matched layers for time harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1337–1375. doi:10.1016/S0045-7825(02)00642-4
  • 4. Basu, U. and Chopra, A.K. (2004) Perfectly matched layers for transient elastodynamics of unbounded domains, International Journal for Numerical Methods in Engineering, 59(8), 1039-1074. doi:10.1002/nme.896
  • 5. Basu, U. (2009) Explicit finite element perfectly matched layer for transient three-dimensional elastic waves, International Journal for Numerical Methods in Engineering, 77, 151–176. doi:10.1002/nme.2397
  • 6. Berenger, J.P. (1994) A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159
  • 7. Bettess, P. (1977) Infinite elements, International Journal for Numerical Methods in Engineering, 11(1), 53-64. doi:10.1002/nme.1620110107
  • 8. Bolisetti, C. (2014). Site response, soil-structure interaction and structure-soil-structure interaction for performance assessment of buildings and nuclear structures, Doctor of Philosophy, State University of New York, Buffalo.
  • 9. Fathi, A., Sadeghi, A., Emami Azadi, M. R. and Hoveidaie, N. (2020) Assessing seismic behavior of a masonry historic building considering soil-foundation-structure interaction (Case Study of Arge-Tabriz), International Journal of Architectural Heritage, 14(6), 795-810. doi: 10.1080/15583058.2019.1568615.
  • 10. Federal Emergency Management Agency (FEMA) (2005) Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Washington.
  • 11. Jayalekshmi, B.R. and Chinmayi, H.K. (2016) Effect of soil stiffness on seismic response of reinforced concrete buildings with shear walls, Innovative Infrastructure Solutions, 1(2). doi:10.1007/s41062-016-0004-0
  • 12. Jeremić, B., Jie, G., Preisig, M., and Tafazzoli, N. (2009) Time domain simulation of soil-foundation-structure interaction in non-uniform soils, Earthquake Engineering & Structural Dynamics, 38(5), 699-718. https://doi.org/10.1002/eqe.896
  • 13. Kucukcoban, S. and Kallivokas, L. (2010) Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media, Computer Methods in Applied Mechanics and Engineering, 200(1-4), 57-76. doi:10.1016/j.cma.2010.07.013
  • 14. LSTC (2012) LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, California.
  • 15. LSTC (2017) LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, California.
  • 16. Lysmer, J. and Kuhlemeyer, R.L. (1969) Finite dynamic model for infinite media, Journal of the Engineering Mechanics Division, 95(4), 859‒878. doi:10.1061/JMCEA3.0001144
  • 17. Mylonakis, G. and Gazetas, G. (2000) Seismic soil-structure interaction: Beneficial or detrimental?, Journal of Earthquake Engineering, 4(3), 277-301. doi:10.1080/13632460009350372
  • 18. Poul, M.K. and Zerva, A. (2018) Time-domain PML formulation for modeling viscoelastic waves with Rayleigh-type damping in an unbounded domain: Theory and application in ABAQUS, Finite Elements in Analysis and Design, 152, 1-16. doi:10.1016/j.finel.2018.08.004
  • 19. Sesli, H. and Akköse, M. (2013) Efficiency of transmitting boundaries on dynamic response of soil-structure interaction systems, 2nd International Balkans Conference on Challenges of Civil Engineering, Tirana, ALBANIA.
  • 20. Sesli, H. (2022) The effect of the infinite soil domain idealized by using transmitting and viscous boundaries on the dynamic behavior of concrete gravity dams, Journal of Innovative Engineering and Natural Science, 1-2, 17-34. doi:10.29228/JIENS.55012
  • 21. Smith, W.D. (1974) A nonreflecting plane boundary for wave propagation problems, Journal of Computational Physics, 15(4), 492-503. doi:10.1016/0021-9991(74)90075-8
  • 22. Tabatabaiefar, H.R. and Massumi A. (2010) A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil–structure interaction, Soil Dynamics and Earthquake Engineering, 30(11), 1259–1267. doi:10.1016/j.soildyn.2010.05.008
  • 23. Torabi, H., and Rayhani, M.T. (2014) Three dimensional Finite Element modeling of seismic soil–structure interaction in soft soil, Computer and Geotechnics, 60, 9-19. doi:10.1016/j.compgeo.2014.03.014
  • 24. Wolf, J.P. (1985) Dynamic soil-structure interaction, Prentice Hall, New Jersey.
  • 25. Zhang, W., Seylabi, E.E. and Taciroglu, E. (2019) An ABAQUS toolbox for soil-structure interaction analysis, Computer and Geotechnics, 114, 103143. doi: 10.1016/j.compgeo.2019.103143

Sismik Yapı-Zemin Etkileşimi İçin Mükemmel Eşleşen Katmanların Etkinliği Üzerine Bir Çalışma

Year 2022, Volume: 27 Issue: 1, 467 - 486, 30.04.2022
https://doi.org/10.17482/uumfd.1073184

Abstract

Direkt yöntem, zemin-yapı etkileşimi (SSI) analizlerinde kullanılan bir sonlu eleman yaklaşımıdır. Bu yöntemin temel varsayımı, sonsuz zemin ortamının, farklı sınır koşulları uygulanarak sınırlandırılmış zemin ortamına dönüştürülmesidir. Bu çalışmanın amacı, SSI analizi için Mükemmel Eşleşen Katmanların (PML) etkinliğini incelemektir. Bu amaçla, zemin-yapı etkileşim problemi geleneksel rijit sınırlar (CB) ve yansıtmayan sınırlar (NRB) ile sınırlandırılan 3 farklı rijitliğe sahip kırpılmış zemin ortamı ile analiz edilmiştir. Bu analizlerden elde edilen sonuçlar referans ankastre tabanlı model ve PML modelleri ile karşılaştırılmıştır. Elde edilen bulgulara göre kırpılmış zemin hacminin plandaki boyutları temel genişliğinin 10 katını aşması durumunda zemin ortamının yapı davranışı üzerindeki etkisinin olmadığı görülmüştür. Temel zemini orta ve sert olması varsayımında PML ve diğer sınır koşullarından elde edilen sonuçların birbirine oldukça yakın olduğu ancak yumuşak zemin koşullarında aralarında daha büyük farklılıkların oluştuğu gözlemlenmiştir. Parametrik çalışmalar sonucunda PML’nin çözüm süresi ve uygulama kolaylığı açısından oldukça üstünlük sağladığı çıkarımı yapılmıştır.

References

  • 1. American Society of Civil Engineers (ASCE) (2010) Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Reston, Virginia.
  • 2. Ates, S., Atmaca, B., Yildirim, E. and Demiroz, N.A. (2013) Effects of soil-structure interaction on construction stage analysis of highway bridges, Computers and Concrete, 12(2), 169-186. doi.org/10.12989/cac.2013.12.2.169
  • 3. Basu, U. and Chopra, A.K. (2003) Perfectly matched layers for time harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1337–1375. doi:10.1016/S0045-7825(02)00642-4
  • 4. Basu, U. and Chopra, A.K. (2004) Perfectly matched layers for transient elastodynamics of unbounded domains, International Journal for Numerical Methods in Engineering, 59(8), 1039-1074. doi:10.1002/nme.896
  • 5. Basu, U. (2009) Explicit finite element perfectly matched layer for transient three-dimensional elastic waves, International Journal for Numerical Methods in Engineering, 77, 151–176. doi:10.1002/nme.2397
  • 6. Berenger, J.P. (1994) A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159
  • 7. Bettess, P. (1977) Infinite elements, International Journal for Numerical Methods in Engineering, 11(1), 53-64. doi:10.1002/nme.1620110107
  • 8. Bolisetti, C. (2014). Site response, soil-structure interaction and structure-soil-structure interaction for performance assessment of buildings and nuclear structures, Doctor of Philosophy, State University of New York, Buffalo.
  • 9. Fathi, A., Sadeghi, A., Emami Azadi, M. R. and Hoveidaie, N. (2020) Assessing seismic behavior of a masonry historic building considering soil-foundation-structure interaction (Case Study of Arge-Tabriz), International Journal of Architectural Heritage, 14(6), 795-810. doi: 10.1080/15583058.2019.1568615.
  • 10. Federal Emergency Management Agency (FEMA) (2005) Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Washington.
  • 11. Jayalekshmi, B.R. and Chinmayi, H.K. (2016) Effect of soil stiffness on seismic response of reinforced concrete buildings with shear walls, Innovative Infrastructure Solutions, 1(2). doi:10.1007/s41062-016-0004-0
  • 12. Jeremić, B., Jie, G., Preisig, M., and Tafazzoli, N. (2009) Time domain simulation of soil-foundation-structure interaction in non-uniform soils, Earthquake Engineering & Structural Dynamics, 38(5), 699-718. https://doi.org/10.1002/eqe.896
  • 13. Kucukcoban, S. and Kallivokas, L. (2010) Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media, Computer Methods in Applied Mechanics and Engineering, 200(1-4), 57-76. doi:10.1016/j.cma.2010.07.013
  • 14. LSTC (2012) LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, California.
  • 15. LSTC (2017) LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, California.
  • 16. Lysmer, J. and Kuhlemeyer, R.L. (1969) Finite dynamic model for infinite media, Journal of the Engineering Mechanics Division, 95(4), 859‒878. doi:10.1061/JMCEA3.0001144
  • 17. Mylonakis, G. and Gazetas, G. (2000) Seismic soil-structure interaction: Beneficial or detrimental?, Journal of Earthquake Engineering, 4(3), 277-301. doi:10.1080/13632460009350372
  • 18. Poul, M.K. and Zerva, A. (2018) Time-domain PML formulation for modeling viscoelastic waves with Rayleigh-type damping in an unbounded domain: Theory and application in ABAQUS, Finite Elements in Analysis and Design, 152, 1-16. doi:10.1016/j.finel.2018.08.004
  • 19. Sesli, H. and Akköse, M. (2013) Efficiency of transmitting boundaries on dynamic response of soil-structure interaction systems, 2nd International Balkans Conference on Challenges of Civil Engineering, Tirana, ALBANIA.
  • 20. Sesli, H. (2022) The effect of the infinite soil domain idealized by using transmitting and viscous boundaries on the dynamic behavior of concrete gravity dams, Journal of Innovative Engineering and Natural Science, 1-2, 17-34. doi:10.29228/JIENS.55012
  • 21. Smith, W.D. (1974) A nonreflecting plane boundary for wave propagation problems, Journal of Computational Physics, 15(4), 492-503. doi:10.1016/0021-9991(74)90075-8
  • 22. Tabatabaiefar, H.R. and Massumi A. (2010) A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil–structure interaction, Soil Dynamics and Earthquake Engineering, 30(11), 1259–1267. doi:10.1016/j.soildyn.2010.05.008
  • 23. Torabi, H., and Rayhani, M.T. (2014) Three dimensional Finite Element modeling of seismic soil–structure interaction in soft soil, Computer and Geotechnics, 60, 9-19. doi:10.1016/j.compgeo.2014.03.014
  • 24. Wolf, J.P. (1985) Dynamic soil-structure interaction, Prentice Hall, New Jersey.
  • 25. Zhang, W., Seylabi, E.E. and Taciroglu, E. (2019) An ABAQUS toolbox for soil-structure interaction analysis, Computer and Geotechnics, 114, 103143. doi: 10.1016/j.compgeo.2019.103143
There are 25 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Abdulkadir Genç This is me 0000-0001-9673-7354

Ahmet Kuvat 0000-0002-7721-7510

Hasan Sesli 0000-0003-3328-5922

Publication Date April 30, 2022
Submission Date February 14, 2022
Acceptance Date March 29, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Genç, A., Kuvat, A., & Sesli, H. (2022). A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 467-486. https://doi.org/10.17482/uumfd.1073184
AMA Genç A, Kuvat A, Sesli H. A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION. UUJFE. April 2022;27(1):467-486. doi:10.17482/uumfd.1073184
Chicago Genç, Abdulkadir, Ahmet Kuvat, and Hasan Sesli. “A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 1 (April 2022): 467-86. https://doi.org/10.17482/uumfd.1073184.
EndNote Genç A, Kuvat A, Sesli H (April 1, 2022) A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 467–486.
IEEE A. Genç, A. Kuvat, and H. Sesli, “A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION”, UUJFE, vol. 27, no. 1, pp. 467–486, 2022, doi: 10.17482/uumfd.1073184.
ISNAD Genç, Abdulkadir et al. “A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (April 2022), 467-486. https://doi.org/10.17482/uumfd.1073184.
JAMA Genç A, Kuvat A, Sesli H. A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION. UUJFE. 2022;27:467–486.
MLA Genç, Abdulkadir et al. “A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 1, 2022, pp. 467-86, doi:10.17482/uumfd.1073184.
Vancouver Genç A, Kuvat A, Sesli H. A STUDY ON EFFICIENCY OF PERFECTLY MATCHED LAYER (PML) FOR SEISMIC SOIL-STRUCTURE INTERACTION. UUJFE. 2022;27(1):467-86.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.