Research Article
BibTex RIS Cite

Nanokompozitlerin Grafen ve Grafen Oksit ile Üretimi ve Karakterizasyonunun İncelenmesi

Year 2022, Volume: 27 Issue: 3, 1221 - 1234, 31.12.2022
https://doi.org/10.17482/uumfd.1100896

Abstract

Bu çalışmanın amacı, epoksi ve CF matrislerine G ve GO ekleyerek G/epoksi, GO/epoksi, G/CFRP, GO/CFRP nanokompozitlerini elde etmek ve bu nanokompozitlerin çekme mukavemeti üzerine G ve GO'nun etkisini araştırmaktır. Bu amaçla, polimer matrislerde G homojen olarak dağılmadığından, G hummers yöntemiyle GO'ya dönüştürülmüş ve elde edilen GO'nun karakterizasyon analizi yapılmıştır. SEM, EDX, FTIR, X-RD analiz sonuçları, GO'nun başarıyla elde edildiğini göstermiştir. Daha sonra epoksi ve CFRP'ye %0,1, %0,2 ve %0,3 oranında G ve GO eklenmiş ve G/epoksi, GO/epoksi, G/CFRP, GO/CFRP nanokompozitleri elde edilmiştir. G ve GO'nun bu nanokompozitlerin çekme mukavemeti üzerindeki etkisini karşılaştırmak için çekme testi uygulanmiştir. En iyi sonuç %0,2 oranında G ve GO ilavesi ile elde edilmiş ve GO'nun çekme mukavemeti üzerindeki etkisinin G'ye göre daha iyi olduğu gözlemlenmiştir.

References

  • 1. Çelik, Y.H., Kilickap, E. and Koçyiğit, N. (2018) Evaluation of drilling performances of nano composites reinforced with graphene and graphene oxide, The International Journal of Advanced Manufacturing Technology,100,2371-2385. doi: 10.1007/s00170-018-2875-z
  • 2. Colak, Ö.U.,Bahlouli, N.,Uzunsoy, D. and Francart, C. (2020) High strain rate behavior of graphene-epoxy nanocomposites,Polymer Testing, 106219. doi: 10.1016/j.polymertesting.2019.106219
  • 3. Deshmukh, K. and Joshi, G.M. (2014) Thermo-mechanical properties of poly (vinyl chloride) /graphene oxide as high performance nanocomposites, Polymer Testing, 34,211-219. doi: 10.1016/j.polymertesting.2014.01.015
  • 4. Deshmukh, K. and Joshi, G.M. (2014) Thermo-mechanical properties of poly (vinylchloride) /graphene oxide as high performance nanocomposites, Polymer Testing, 34,211-219. doi:10.1016/j.polymertesting.2014.01.015
  • 5. Goncalves, G., Marques, P.A.A.P., Timmons, A.B., Bdkin, I., Singh, M.K., Emamic, N. and Gracio, J. (2012) Graphene oxide modified with PMMA via ATRP as a reinforcement filler, Journal of Material Chemistry, 20, 9927-9934. doi:10.1039/C0JM01674H
  • 6. Ibrahim, A., Klopocinska, A., Horvat, K. and Hamid, Z.A. (2021) Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations, Polymers, 13, 2869. doi: 10.3390/polym13172869
  • 7. Kang, W., Rhee, K.Y. and Park, S. (2017) Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites, Composites Part B,114, 175-183. doi: 10.1016/j.compositesb.2017.01.032
  • 8. Kausar, A., Rafique, I., Anwar, Z. and Muhammad, B. (2016) Perspectives of epoxy/graphene oxide composite: significant features and technical applications, Polymer-Plastics Technology and Engineering, 55,704-722. doi: 10.1080/03602559.2015.1098700
  • 9. Kernin, A.,Wan,K.,Liu,Y.,Shi,X.,Kong, J.,Bilotti, E.,Peijs, T. and Zhang, H.(2019) The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites,Composites Science and Technology,169,224-231. doi:10.1016/j.compscitech.2018.10.036
  • 10. Kim, H., Kobayashi, S., Abdurrahim, M.A., Zhang, M.J., Khusainova, A., Hillmyer, M.A., Abdala, A.A. and Macosko, C.W. (2011) Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods, Polymer,52,1837-1846. doi: 10.1016/j.polymer.2011.02.017
  • 11. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. and Lee, J.H. (2012) Chemical functionalization of graphene and its applications, Progress in Materials Science,57, 1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
  • 12. Lalabadi, M.A.,Hashemi, H.,Feng, J. and Jafari,S.M. (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites,Advances in Colloid and Interface Science, 284, 102250. doi:10.1016/j.cis.2020.102250
  • 13. Le, M.-T. and Huang, S.-C. (2015) Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets,Materials,8,5526-5536. doi: 10.3390/ma8085262
  • 14. Li, Z., Young, R.J., Wang, R., Yang, F., Hao, L., Jiao, W. and Liu, W. (2013) The role of functional groups on graphene oxide in epoxy nanocomposites, Polymer, 54, 5821-5829. doi: 10.1016/j.polymer.2013.08.026
  • 15. Li,C.,Shi, Y.,Chen, X.,He, D.,Shen, L. and Bao, N. (2018) Controlled synthesis of graphite oxide: Formation process, oxidation kinetics, and optimized conditions, Chemical Engineering Science,176,319- 328. doi:10.1016/j.ces.2017.10.028
  • 16. Mahmoud, W.E. (2011) Morphology and physical properties of poly (ethylene oxide) loaded graphene nanocomposites prepared by two different techniques, European Polymer Journal,47,1534- 1540. doi:10.1016/j.eurpolymj.2011.05.011
  • 17. Önder, M., Kayhan, E., Özkar, S. and Schneider, J.J. (2012) Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane, International Journal of Hydrogen Energy,37,8161-8169. doi: 10.1016/j.ijhydene.2012.02.128
  • 18. Pan, B., Zhang, S., Li, W., Zhao, J., Liu, J., Zhang, Y. and Zhang, Y. (2012) Tribological and mechanical investigation of MC nylon reinforced by modified graphene oxide,Wear, 294-295,395-4. doi:10.3390/coatings8030091
  • 19. Park, S., He, S.,Wang, J.,Stein, A. and Macosko, C.W. (2016) Graphene-polyethylene nanocomposites:Effect of graphene functionalization, Polymer,104,1-9. doi: 10.1016/j.polymer.2016.09.058
  • 20. Rostampour, A., Sharif, M. and Mouji, N. (2016) Synergetic effects of graphene oxide and clay on the microstructure and properties of HIPS/graphene oxide/clay nanocomposites, Polymer Plastics Technology and Engineering, 56,171-183. doi: 10.1080/03602559.2016.1185626
  • 21. Sainsbury, T., Gnaniah, S., Spencer, S.J., Mignuzzi, S., Belsey, M.A., Paton, K.R. and Satti, A. (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization, Carbon, 114,367-376. doi:10.1016/j.carbon.2016.11.061
  • 22. Shah, R., Kausar, A., Muhammad, B. and Shah, S. (2015) Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: A Review, Polymer-Plastics Technology and Engineering, 54,173-183. doi:10.1080/03602559.2014.955202
  • 23. Sofla, R.L.M.,Rezaei, M.,Babaie, A. and Nasiri, M. (2019) Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties, Composites Part B: Engineering, 175, 107090. doi:10.1016/j.compositesb.2019.107090
  • 24. Sridharan, V., Raja, T. and Muthukrishnan, N. (2016) Study of the effect of matrix, fibre treatment and graphene on delamination by drilling jute / epoxy nanohybrid composite, Arab Journal Science Engineering, 41,1883-1894. doi:10.1007/s13369-015-2005-2
  • 25. Sun, X.,Huang, C.,Wang, L.,Liang, L.,Cheng, Y.,Fei, W. and Li, Y. (2021) Recent progress in graphene/polymer nanocomposites,Advanced Materials,33(6),2001105. doi: 10.1002/adma.202001105
  • 26. Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Wu, L.B., Jiang, J.-X. and Lai, G.Q. (2013) The effect of graphene dispersion on the mechanical properties of graphene / epoxy composites, Carbon, 60,16 -27. doi:10.1016/j.carbon.2013.03.050
  • 27. Wang, P., Yang, J., Liu, W., Tang, X.Z., Zhao, K., Lu, X. and Xu, S. (2017) Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers, Materials and Design,113,68-75. doi: 10.1016/j.matdes.2016.10.013
  • 28. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. and Lu, H. (2016) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylenesuccinate) nanocomposites, Composites Science and Technology,72,1-6. doi: 10.1016/j.compscitech.2011.05.007
  • 29. Zhang, X., Heng, Z., Shen, L., Liang, M., Zeng, Z., Chen, Y. and Zou, H. (2020) High-performance epoxy nanocomposites via constructing rigid structured interphase with epoxy-rich graphene oxide, Journal Applied of Polymer Science, 137(45), 49402. doi: 10.1002/app.49402
  • 30. Zhu, B.Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruof, R.S. (2010) Graphene and graphene oxide: synthesis, properties, and applications, Advanced Materials, 22,3906-3924. doi:10.1002/adma.2010001068

PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE

Year 2022, Volume: 27 Issue: 3, 1221 - 1234, 31.12.2022
https://doi.org/10.17482/uumfd.1100896

Abstract

The aim of this study was to i.) obtain Graphene (G)/epoxy, Graphene Oxide (GO)/epoxy, G/carbon fiber reinforced plastic (CFRP), GO/CFRP nanocomposites by G and GO addition to epoxy and CF matrices and ii.) investigate the effect of G and GO addition on tensile strength of the nanocomposites produced. The graphene was not homogeneously distributed in polymer matrices; therefore, the G was converted into the GO using hummers method. The characterization GO was carried out by SEM, EDX, FTIR and X-RD analysis, which confirmed the successful production of the GO. The G/epoxy, GO/epoxy, G/CFRP and GO/CFRP nanocomposites were obtained by adding G and GO to epoxy and CF at a rate of 0.1, 0.2, and 0.3%. The effect of G and GO on tensile strength of the nanocomposites was determined using a tensile test. The addition of G and GO at 0.2% rate yielded the best results. The effect of GO on tensile strength was better compared to that of the G.

References

  • 1. Çelik, Y.H., Kilickap, E. and Koçyiğit, N. (2018) Evaluation of drilling performances of nano composites reinforced with graphene and graphene oxide, The International Journal of Advanced Manufacturing Technology,100,2371-2385. doi: 10.1007/s00170-018-2875-z
  • 2. Colak, Ö.U.,Bahlouli, N.,Uzunsoy, D. and Francart, C. (2020) High strain rate behavior of graphene-epoxy nanocomposites,Polymer Testing, 106219. doi: 10.1016/j.polymertesting.2019.106219
  • 3. Deshmukh, K. and Joshi, G.M. (2014) Thermo-mechanical properties of poly (vinyl chloride) /graphene oxide as high performance nanocomposites, Polymer Testing, 34,211-219. doi: 10.1016/j.polymertesting.2014.01.015
  • 4. Deshmukh, K. and Joshi, G.M. (2014) Thermo-mechanical properties of poly (vinylchloride) /graphene oxide as high performance nanocomposites, Polymer Testing, 34,211-219. doi:10.1016/j.polymertesting.2014.01.015
  • 5. Goncalves, G., Marques, P.A.A.P., Timmons, A.B., Bdkin, I., Singh, M.K., Emamic, N. and Gracio, J. (2012) Graphene oxide modified with PMMA via ATRP as a reinforcement filler, Journal of Material Chemistry, 20, 9927-9934. doi:10.1039/C0JM01674H
  • 6. Ibrahim, A., Klopocinska, A., Horvat, K. and Hamid, Z.A. (2021) Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations, Polymers, 13, 2869. doi: 10.3390/polym13172869
  • 7. Kang, W., Rhee, K.Y. and Park, S. (2017) Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites, Composites Part B,114, 175-183. doi: 10.1016/j.compositesb.2017.01.032
  • 8. Kausar, A., Rafique, I., Anwar, Z. and Muhammad, B. (2016) Perspectives of epoxy/graphene oxide composite: significant features and technical applications, Polymer-Plastics Technology and Engineering, 55,704-722. doi: 10.1080/03602559.2015.1098700
  • 9. Kernin, A.,Wan,K.,Liu,Y.,Shi,X.,Kong, J.,Bilotti, E.,Peijs, T. and Zhang, H.(2019) The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites,Composites Science and Technology,169,224-231. doi:10.1016/j.compscitech.2018.10.036
  • 10. Kim, H., Kobayashi, S., Abdurrahim, M.A., Zhang, M.J., Khusainova, A., Hillmyer, M.A., Abdala, A.A. and Macosko, C.W. (2011) Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods, Polymer,52,1837-1846. doi: 10.1016/j.polymer.2011.02.017
  • 11. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. and Lee, J.H. (2012) Chemical functionalization of graphene and its applications, Progress in Materials Science,57, 1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
  • 12. Lalabadi, M.A.,Hashemi, H.,Feng, J. and Jafari,S.M. (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites,Advances in Colloid and Interface Science, 284, 102250. doi:10.1016/j.cis.2020.102250
  • 13. Le, M.-T. and Huang, S.-C. (2015) Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets,Materials,8,5526-5536. doi: 10.3390/ma8085262
  • 14. Li, Z., Young, R.J., Wang, R., Yang, F., Hao, L., Jiao, W. and Liu, W. (2013) The role of functional groups on graphene oxide in epoxy nanocomposites, Polymer, 54, 5821-5829. doi: 10.1016/j.polymer.2013.08.026
  • 15. Li,C.,Shi, Y.,Chen, X.,He, D.,Shen, L. and Bao, N. (2018) Controlled synthesis of graphite oxide: Formation process, oxidation kinetics, and optimized conditions, Chemical Engineering Science,176,319- 328. doi:10.1016/j.ces.2017.10.028
  • 16. Mahmoud, W.E. (2011) Morphology and physical properties of poly (ethylene oxide) loaded graphene nanocomposites prepared by two different techniques, European Polymer Journal,47,1534- 1540. doi:10.1016/j.eurpolymj.2011.05.011
  • 17. Önder, M., Kayhan, E., Özkar, S. and Schneider, J.J. (2012) Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane, International Journal of Hydrogen Energy,37,8161-8169. doi: 10.1016/j.ijhydene.2012.02.128
  • 18. Pan, B., Zhang, S., Li, W., Zhao, J., Liu, J., Zhang, Y. and Zhang, Y. (2012) Tribological and mechanical investigation of MC nylon reinforced by modified graphene oxide,Wear, 294-295,395-4. doi:10.3390/coatings8030091
  • 19. Park, S., He, S.,Wang, J.,Stein, A. and Macosko, C.W. (2016) Graphene-polyethylene nanocomposites:Effect of graphene functionalization, Polymer,104,1-9. doi: 10.1016/j.polymer.2016.09.058
  • 20. Rostampour, A., Sharif, M. and Mouji, N. (2016) Synergetic effects of graphene oxide and clay on the microstructure and properties of HIPS/graphene oxide/clay nanocomposites, Polymer Plastics Technology and Engineering, 56,171-183. doi: 10.1080/03602559.2016.1185626
  • 21. Sainsbury, T., Gnaniah, S., Spencer, S.J., Mignuzzi, S., Belsey, M.A., Paton, K.R. and Satti, A. (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization, Carbon, 114,367-376. doi:10.1016/j.carbon.2016.11.061
  • 22. Shah, R., Kausar, A., Muhammad, B. and Shah, S. (2015) Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: A Review, Polymer-Plastics Technology and Engineering, 54,173-183. doi:10.1080/03602559.2014.955202
  • 23. Sofla, R.L.M.,Rezaei, M.,Babaie, A. and Nasiri, M. (2019) Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties, Composites Part B: Engineering, 175, 107090. doi:10.1016/j.compositesb.2019.107090
  • 24. Sridharan, V., Raja, T. and Muthukrishnan, N. (2016) Study of the effect of matrix, fibre treatment and graphene on delamination by drilling jute / epoxy nanohybrid composite, Arab Journal Science Engineering, 41,1883-1894. doi:10.1007/s13369-015-2005-2
  • 25. Sun, X.,Huang, C.,Wang, L.,Liang, L.,Cheng, Y.,Fei, W. and Li, Y. (2021) Recent progress in graphene/polymer nanocomposites,Advanced Materials,33(6),2001105. doi: 10.1002/adma.202001105
  • 26. Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Wu, L.B., Jiang, J.-X. and Lai, G.Q. (2013) The effect of graphene dispersion on the mechanical properties of graphene / epoxy composites, Carbon, 60,16 -27. doi:10.1016/j.carbon.2013.03.050
  • 27. Wang, P., Yang, J., Liu, W., Tang, X.Z., Zhao, K., Lu, X. and Xu, S. (2017) Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers, Materials and Design,113,68-75. doi: 10.1016/j.matdes.2016.10.013
  • 28. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. and Lu, H. (2016) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylenesuccinate) nanocomposites, Composites Science and Technology,72,1-6. doi: 10.1016/j.compscitech.2011.05.007
  • 29. Zhang, X., Heng, Z., Shen, L., Liang, M., Zeng, Z., Chen, Y. and Zou, H. (2020) High-performance epoxy nanocomposites via constructing rigid structured interphase with epoxy-rich graphene oxide, Journal Applied of Polymer Science, 137(45), 49402. doi: 10.1002/app.49402
  • 30. Zhu, B.Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruof, R.S. (2010) Graphene and graphene oxide: synthesis, properties, and applications, Advanced Materials, 22,3906-3924. doi:10.1002/adma.2010001068
There are 30 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

Nihayet Koçyigit 0000-0002-3472-1127

Early Pub Date December 9, 2022
Publication Date December 31, 2022
Submission Date April 9, 2022
Acceptance Date December 6, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Koçyigit, N. (2022). PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1221-1234. https://doi.org/10.17482/uumfd.1100896
AMA Koçyigit N. PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE. UUJFE. December 2022;27(3):1221-1234. doi:10.17482/uumfd.1100896
Chicago Koçyigit, Nihayet. “PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 3 (December 2022): 1221-34. https://doi.org/10.17482/uumfd.1100896.
EndNote Koçyigit N (December 1, 2022) PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1221–1234.
IEEE N. Koçyigit, “PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE”, UUJFE, vol. 27, no. 3, pp. 1221–1234, 2022, doi: 10.17482/uumfd.1100896.
ISNAD Koçyigit, Nihayet. “PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (December 2022), 1221-1234. https://doi.org/10.17482/uumfd.1100896.
JAMA Koçyigit N. PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE. UUJFE. 2022;27:1221–1234.
MLA Koçyigit, Nihayet. “PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 3, 2022, pp. 1221-34, doi:10.17482/uumfd.1100896.
Vancouver Koçyigit N. PRODUCTION AND CHARACTERIZATION OF NANOCOMPOSITES WITH GRAPHENE AND GRAPHENE OXIDE. UUJFE. 2022;27(3):1221-34.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.