Research Article
BibTex RIS Cite

MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ

Year 2022, Volume: 27 Issue: 3, 1235 - 1248, 31.12.2022
https://doi.org/10.17482/uumfd.1125289

Abstract

Diyabet çağımızın en önemli halk sağlığı problemlerinden biridir. Kandaki glikoz seviyesinin kontrolü için kandaki glikoz oranının belirlenmesi gereklidir. Cihaz perspektifinden bakıldığında kandaki glikoz oranının belirlenmesinde invazif ve minimal invazif yöntemler kullanılmaktadır. Her iki yöntem de incelendiğinde enfeksiyonel ve psikolojik riskleri beraberinde getirdikleri görülmektedir. Bu sebeplerden dolayı araştırmacılar invazif olmayan bir yöntem geliştirmek için çeşitli araştırmalar yapmaktadırlar. Milimetre dalgalar (mm-dalga), doku üzerinde herhangi bir zararlı etki yapmadığından doku katmanında invazif olmayan glikoz ölçümüne imkân sunar. Kanın karmaşık geçirgenliği mm-dalga bandında glikoz konsantrasyonu için oldukça hassastır. Bu çalışmada, 30 – 35 GHz bandında çeşitli glikoz oranlarına sahip sıvılarda mm-dalga yansıması, vektör ağ analizörü kullanılarak açık uçlu koaksiyel prob ve WR-28 adaptörü kullanılarak ayrı ayrı elde edilmiştir. - Elde edilen veriler her iki yöntem için 0.1 g/ml, 0.19 g/ml, 0.26 g/ml ve 0.33 g/ml glikoz konsantrasyonuna sahip sulu çözeltilerde, şekerli - şekersiz gazozda ve kola - diyet kola - kola zero gibi sıvılarda glikoz seviyesinin belirlemesinde S11-yansıma katsayısı verisinin ayırt edici olduğunu göstermiştir. Elde edilen sonuçlar mm-dalgaların glikoz seviyesinin tespiti ve takibi için umut verici olduğunu göstermiştir.

References

  • 1. Alison, J. M., & Sheppard, R. J. (1993). Dielectric properties of human blood at microwave frequencies. Physics in Medicine and Biology, 38(7). https://doi.org/10.1088/0031-9155/38/7/007
  • 2. Cano-Garcia, H., Gouzouasis, I., Sotiriou, I., Saha, S., Palikaras, G., Kosmas, P., & Kallos, E. (2016). Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing. 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 1, 10–12. https://doi.org/10.1109/EuCAP.2016.7481178
  • 3. Choi, H., Naylon, J., Luzio, S., Beutler, J., Birchall, J., Martin, C., & Porch, A. (2015). Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor Europe PMC Funders Group. IEEE Trans Microw Theory Tech, 63(10), 3016–3025. https://doi.org/10.1109/TMTT
  • 4. Ebrahimi, A., Scott, J., & Ghorbani, K. (2020). Microwave reflective biosensor for glucose level detection in aqueous solutions. Sensors and Actuators, A: Physical, 301, 111662. https://doi.org/10.1016/j.sna.2019.111662
  • 5. Federasyonu, D., & Sağlık, D. (2021). DÜNYA DİYABET GÜNÜ 14 Kasım 2021 2006. 5, 1–7.
  • 6. Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., Lien, D. H., Brooks, G. A., Davis, R. W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587). https://doi.org/10.1038/nature16521
  • 7. Gennarelli, G., Romeo, S., Scarfi, M. R., & Soldovieri, F. (2013). A microwave resonant sensor for concentration measurements of liquid solutions. IEEE Sensors Journal, 13(5), 1857–1864. https://doi.org/10.1109/JSEN.2013.2244035
  • 8. Gonzales, W. V., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. In Sensors (Switzerland) (Vol. 19, Issue 4). https://doi.org/10.3390/s19040800
  • 9. Guo, D., Zhang, D., Zhang, L., & Lu, G. (2012). Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators, B: Chemical, 173. https://doi.org/10.1016/j.snb.2012.06.025
  • 10. Hofmann, M., Bloss, M., Weigel, R., Fischer, G., & Kissinger, D. (2012). Non-invasive glucose monitoring using open electromagnetic waveguides. European Microwave Week 2012: “Space for Microwaves”, EuMW 2012, Conference Proceedings - 42nd European Microwave Conference, EuMC 2012, 546–549. https://doi.org/10.23919/eumc.2012.6459152
  • 11. Hofmann, Maximilian, Fersch, T., Weigel, R., Fischer, G., & Kissinger, D. (2011). A novel approach to non-invasive blood glucose measurement based on RF transmission. MeMeA 2011 - 2011 IEEE International Symposium on Medical Measurements and Applications, Proceedings, 3, 39–42. https://doi.org/10.1109/MeMeA.2011.5966704
  • 12. Hu, S., Nagae, S., & Hirose, A. (2019). Millimeter-Wave Adaptive Glucose Concentration Estimation with Complex-Valued Neural Networks. IEEE Transactions on Biomedical Engineering, 66(7), 2065– 2071. https://doi.org/10.1109/TBME.2018.2883085
  • 13. Kang, J. W., Park, Y. S., Chang, H., Lee, W., Singh, S. P., Choi, W., Galindo, L. H., Dasari, R. R., Nam, S. H., Park, J., & So, P. T. C. (2020). Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Science Advances, 6(4). https://doi.org/10.1126/sciadv.aay5206
  • 14. Karacolak, T., Moreland, E. C., & Topsakal, E. (2013). Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring. Microwave and Optical Technology Letters, 55(5). https://doi.org/10.1002/mop.27515
  • 15. Kim, J., Babajanyan, A., Hovsepyan, A., Lee, K., & Friedman, B. (2008). Microwave dielectric resonator biosensor for aqueous glucose solution. Review of Scientific Instruments, 79(8). https://doi.org/10.1063/1.2968115
  • 16. Kurabayashi, T., Konishi, K., Yodokawa, S., & Kosaka, S. (2015). Reflection spectroscopy on solutions of biological materials in millimeter wave frequency. IRMMW-THz 2015 - 40th International Conference on Infrared, Millimeter, and Terahertz Waves, 9–10. https://doi.org/10.1109/IRMMW-THz.2015.7327916
  • 17. Lan, Y. T., Kuang, Y. P., Zhou, L. P., Wu, G. Y., Gu, P. C., Wei, H. J., & Chen, K. (2017). Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Physics Letters, 14(3). https://doi.org/10.1088/1612-202X/aa58c0
  • 18. Liakat, S., Bors, K. A., Xu, L., Woods, C. M., Doyle, J., & Gmachl, C. F. (2014). Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomedical Optics Express, 5(7). https://doi.org/10.1364/boe.5.002397
  • 19. Malik, S., Gupta, S., Khadgawat, R., & Anand, S. (2015). A novel non-invasive blood glucose monitoring approach using saliva. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015. https://doi.org/10.1109/SPICES.2015.7091562
  • 20. Meriakri, V. V., Chigrai, E. E., Nikitin, I. P., & Parkhomenko, M. P. (2007). Dielectric properties of water solutions with small content of glucose in the millimeter -wave band and the determination of glucose in blood. MSMW’07 Symposium Proceedings - The 6th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves and Workshop on Terahertz Technologies, 2. https://doi.org/10.1109/MSMW.2007.4294844
  • 21. Nikawa, Y., & Michiyama, T. (2007). Blood-sugar monitoring by reflection of millimeter wave. Asia-Pacific Microwave Conference Proceedings, APMC. https://doi.org/10.1109/APMC.2007.4555070
  • 22. Nikawa, Y., & Someya, D. (2001). Application of millimeter waves to measure blood sugar level. Asia-Pacific Microwave Conference Proceedings, APMC, 3, 1303–1306. https://doi.org/10.1109/apmc.2001.985374
  • 23. Omer, A. E., Safavi-Naeini, S., Hughson, R., & Shaker, G. (2020). Blood glucose level monitoring using an FMCW millimeter-wave radar sensor. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030385
  • 24. Omer, A. E., Shaker, G., & Safavi-Naeini, S. (2018). Non-invasive Glucose Monitoring at mm-Wave Frequencies. Journal of Computational Vision and Imaging Systems, 4(1). https://doi.org/10.15353/jcvis.v4i1.325
  • 25. OMS. (2016). Global Report on Diabetes. Isbn, 978, 6–86. https://scihub.si/https://apps.who.int/iris/handle/10665/204874%0Ahttps://apps.who.int/iris/bitstream/handle/10665/204874/WHO_NMH_NVI_16.3_eng.pdf? sequence=1%0Ahttp://www.who.int/about/licensing/copyright_form/index.html%0Ahttp://www.who.int/about/licens
  • 26. Pozar M. David. (n.d.). Pozar_Microwave Engineering(2012).
  • 27. Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., & Kallos, E. (2017). A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06926-1
  • 28. Salman, S., Satman, İ., Yılmaz, C., İmamoğlu, Ş., & Dinççağ, N. (2020). TEMD Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu.
  • 29. Saracoglu, O. G., Bagis, A., Konar, M., & Tabaru, T. E. (2016). ABC algorithm based fuzzy modeling of optical glucose detection. Advances in Electrical and Computer Engineering, 16(3). https://doi.org/10.4316/AECE.2016.03006
  • 30. Shaker, G., Chen, R., Milligan, B., & Qu, T. (2016). Ambient electromagnetic energy harvesting system for on-body sensors. Electronics Letters, 52(22). https://doi.org/10.1049/el.2016.3123
  • 31. Siegel, P. H., Lee, Y., & Pikov, V. (2014). Millimeter-wave non-invasive monitoring of glucose in anesthetized rats. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. https://doi.org/10.1109/IRMMW-THz.2014.6956294
  • 32. Topsakal, E., Karacolak, T., & Moreland, E. C. (2011). Glucose-dependent dielectric properties of blood plasma. 2011 30th URSI General Assembly and Scientific Symposium, URSIGASS 2011, 1–4. https://doi.org/10.1109/URSIGASS.2011.6051324
  • 33. Xue, Y., Thalmayer, A. S., Zeising, S., Fischer, G., & Lübke, M. (2022). Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. In Sensors (Vol. 22, Issue 2). https://doi.org/10.3390/s22020425
  • 34. Zanon, M., Mueller, M., Zakharov, P., Talary, M. S., Donath, M., Stahel, W. A., & Caduff, A. (2018). First Experiences With a Wearable Multisensor Device in a Noninvasive Continuous Glucose Monitoring Study at Home, Part II: The Investigators’ View. Journal of Diabetes Science and Technology, 12(3). https://doi.org/10.1177/1932296817740591
  • 35. Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. In Journal of Diabetes Science and Technology (Vol. 5, Issue 1). https://doi.org/10.1177/193229681100500123

Determination Of Glucose Level In Liquids With A Non-Invasive Method In The Millimeter Waveband

Year 2022, Volume: 27 Issue: 3, 1235 - 1248, 31.12.2022
https://doi.org/10.17482/uumfd.1125289

Abstract

Diabetes is one of the most important public health problems of our age. In order to control the glucose level in the blood, it is necessary to determine the sugar level in the blood. From the device perspective, invasive and minimally invasive methods are used to determine the glucose level in the blood. When both methods are examined, it is seen that these methods bring along infectious and psychological risks. For these reasons, researchers are conducting various studies to develop a noninvasive method. Since millimeter waves (MMW) do not have any harmful effect on the tissue, it allows non-invasive glucose measurement in the tissue layer. The complex permeability of blood is highly sensitive to glucose concentration in the millimeter waveband. In this study, MMW reflection in liquids with various glucose ratios in the 30 – 35 GHz band was obtained separately using an open-ended coaxial probe and WR-28 adapter using a vector network analyzer. The data obtained in both methods showed that S11-reflection coefficient data was distinctive for determining the glucose level in aqueous solutions with glucose concentrations of 0.1 g/ml, 0.19 g/ml, 0.26 g/ml and 0.33 g/ml, in sugary-sugar-free soda and in liquids such as cola-diet cola-cola zero. Obtained results indicates that millimeter waves are promising for glucose level detection and monitoring.

References

  • 1. Alison, J. M., & Sheppard, R. J. (1993). Dielectric properties of human blood at microwave frequencies. Physics in Medicine and Biology, 38(7). https://doi.org/10.1088/0031-9155/38/7/007
  • 2. Cano-Garcia, H., Gouzouasis, I., Sotiriou, I., Saha, S., Palikaras, G., Kosmas, P., & Kallos, E. (2016). Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing. 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 1, 10–12. https://doi.org/10.1109/EuCAP.2016.7481178
  • 3. Choi, H., Naylon, J., Luzio, S., Beutler, J., Birchall, J., Martin, C., & Porch, A. (2015). Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor Europe PMC Funders Group. IEEE Trans Microw Theory Tech, 63(10), 3016–3025. https://doi.org/10.1109/TMTT
  • 4. Ebrahimi, A., Scott, J., & Ghorbani, K. (2020). Microwave reflective biosensor for glucose level detection in aqueous solutions. Sensors and Actuators, A: Physical, 301, 111662. https://doi.org/10.1016/j.sna.2019.111662
  • 5. Federasyonu, D., & Sağlık, D. (2021). DÜNYA DİYABET GÜNÜ 14 Kasım 2021 2006. 5, 1–7.
  • 6. Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., Lien, D. H., Brooks, G. A., Davis, R. W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587). https://doi.org/10.1038/nature16521
  • 7. Gennarelli, G., Romeo, S., Scarfi, M. R., & Soldovieri, F. (2013). A microwave resonant sensor for concentration measurements of liquid solutions. IEEE Sensors Journal, 13(5), 1857–1864. https://doi.org/10.1109/JSEN.2013.2244035
  • 8. Gonzales, W. V., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. In Sensors (Switzerland) (Vol. 19, Issue 4). https://doi.org/10.3390/s19040800
  • 9. Guo, D., Zhang, D., Zhang, L., & Lu, G. (2012). Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators, B: Chemical, 173. https://doi.org/10.1016/j.snb.2012.06.025
  • 10. Hofmann, M., Bloss, M., Weigel, R., Fischer, G., & Kissinger, D. (2012). Non-invasive glucose monitoring using open electromagnetic waveguides. European Microwave Week 2012: “Space for Microwaves”, EuMW 2012, Conference Proceedings - 42nd European Microwave Conference, EuMC 2012, 546–549. https://doi.org/10.23919/eumc.2012.6459152
  • 11. Hofmann, Maximilian, Fersch, T., Weigel, R., Fischer, G., & Kissinger, D. (2011). A novel approach to non-invasive blood glucose measurement based on RF transmission. MeMeA 2011 - 2011 IEEE International Symposium on Medical Measurements and Applications, Proceedings, 3, 39–42. https://doi.org/10.1109/MeMeA.2011.5966704
  • 12. Hu, S., Nagae, S., & Hirose, A. (2019). Millimeter-Wave Adaptive Glucose Concentration Estimation with Complex-Valued Neural Networks. IEEE Transactions on Biomedical Engineering, 66(7), 2065– 2071. https://doi.org/10.1109/TBME.2018.2883085
  • 13. Kang, J. W., Park, Y. S., Chang, H., Lee, W., Singh, S. P., Choi, W., Galindo, L. H., Dasari, R. R., Nam, S. H., Park, J., & So, P. T. C. (2020). Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Science Advances, 6(4). https://doi.org/10.1126/sciadv.aay5206
  • 14. Karacolak, T., Moreland, E. C., & Topsakal, E. (2013). Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring. Microwave and Optical Technology Letters, 55(5). https://doi.org/10.1002/mop.27515
  • 15. Kim, J., Babajanyan, A., Hovsepyan, A., Lee, K., & Friedman, B. (2008). Microwave dielectric resonator biosensor for aqueous glucose solution. Review of Scientific Instruments, 79(8). https://doi.org/10.1063/1.2968115
  • 16. Kurabayashi, T., Konishi, K., Yodokawa, S., & Kosaka, S. (2015). Reflection spectroscopy on solutions of biological materials in millimeter wave frequency. IRMMW-THz 2015 - 40th International Conference on Infrared, Millimeter, and Terahertz Waves, 9–10. https://doi.org/10.1109/IRMMW-THz.2015.7327916
  • 17. Lan, Y. T., Kuang, Y. P., Zhou, L. P., Wu, G. Y., Gu, P. C., Wei, H. J., & Chen, K. (2017). Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Physics Letters, 14(3). https://doi.org/10.1088/1612-202X/aa58c0
  • 18. Liakat, S., Bors, K. A., Xu, L., Woods, C. M., Doyle, J., & Gmachl, C. F. (2014). Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomedical Optics Express, 5(7). https://doi.org/10.1364/boe.5.002397
  • 19. Malik, S., Gupta, S., Khadgawat, R., & Anand, S. (2015). A novel non-invasive blood glucose monitoring approach using saliva. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015. https://doi.org/10.1109/SPICES.2015.7091562
  • 20. Meriakri, V. V., Chigrai, E. E., Nikitin, I. P., & Parkhomenko, M. P. (2007). Dielectric properties of water solutions with small content of glucose in the millimeter -wave band and the determination of glucose in blood. MSMW’07 Symposium Proceedings - The 6th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves and Workshop on Terahertz Technologies, 2. https://doi.org/10.1109/MSMW.2007.4294844
  • 21. Nikawa, Y., & Michiyama, T. (2007). Blood-sugar monitoring by reflection of millimeter wave. Asia-Pacific Microwave Conference Proceedings, APMC. https://doi.org/10.1109/APMC.2007.4555070
  • 22. Nikawa, Y., & Someya, D. (2001). Application of millimeter waves to measure blood sugar level. Asia-Pacific Microwave Conference Proceedings, APMC, 3, 1303–1306. https://doi.org/10.1109/apmc.2001.985374
  • 23. Omer, A. E., Safavi-Naeini, S., Hughson, R., & Shaker, G. (2020). Blood glucose level monitoring using an FMCW millimeter-wave radar sensor. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030385
  • 24. Omer, A. E., Shaker, G., & Safavi-Naeini, S. (2018). Non-invasive Glucose Monitoring at mm-Wave Frequencies. Journal of Computational Vision and Imaging Systems, 4(1). https://doi.org/10.15353/jcvis.v4i1.325
  • 25. OMS. (2016). Global Report on Diabetes. Isbn, 978, 6–86. https://scihub.si/https://apps.who.int/iris/handle/10665/204874%0Ahttps://apps.who.int/iris/bitstream/handle/10665/204874/WHO_NMH_NVI_16.3_eng.pdf? sequence=1%0Ahttp://www.who.int/about/licensing/copyright_form/index.html%0Ahttp://www.who.int/about/licens
  • 26. Pozar M. David. (n.d.). Pozar_Microwave Engineering(2012).
  • 27. Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., & Kallos, E. (2017). A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06926-1
  • 28. Salman, S., Satman, İ., Yılmaz, C., İmamoğlu, Ş., & Dinççağ, N. (2020). TEMD Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu.
  • 29. Saracoglu, O. G., Bagis, A., Konar, M., & Tabaru, T. E. (2016). ABC algorithm based fuzzy modeling of optical glucose detection. Advances in Electrical and Computer Engineering, 16(3). https://doi.org/10.4316/AECE.2016.03006
  • 30. Shaker, G., Chen, R., Milligan, B., & Qu, T. (2016). Ambient electromagnetic energy harvesting system for on-body sensors. Electronics Letters, 52(22). https://doi.org/10.1049/el.2016.3123
  • 31. Siegel, P. H., Lee, Y., & Pikov, V. (2014). Millimeter-wave non-invasive monitoring of glucose in anesthetized rats. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. https://doi.org/10.1109/IRMMW-THz.2014.6956294
  • 32. Topsakal, E., Karacolak, T., & Moreland, E. C. (2011). Glucose-dependent dielectric properties of blood plasma. 2011 30th URSI General Assembly and Scientific Symposium, URSIGASS 2011, 1–4. https://doi.org/10.1109/URSIGASS.2011.6051324
  • 33. Xue, Y., Thalmayer, A. S., Zeising, S., Fischer, G., & Lübke, M. (2022). Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. In Sensors (Vol. 22, Issue 2). https://doi.org/10.3390/s22020425
  • 34. Zanon, M., Mueller, M., Zakharov, P., Talary, M. S., Donath, M., Stahel, W. A., & Caduff, A. (2018). First Experiences With a Wearable Multisensor Device in a Noninvasive Continuous Glucose Monitoring Study at Home, Part II: The Investigators’ View. Journal of Diabetes Science and Technology, 12(3). https://doi.org/10.1177/1932296817740591
  • 35. Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. In Journal of Diabetes Science and Technology (Vol. 5, Issue 1). https://doi.org/10.1177/193229681100500123
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Ömer Faruk Göktaş 0000-0002-2021-4052

İlyas Çankaya 0000-0002-6072-3097

Esra Şengün Ermeydan 0000-0002-5953-4301

Early Pub Date December 9, 2022
Publication Date December 31, 2022
Submission Date June 2, 2022
Acceptance Date December 6, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Göktaş, Ö. F., Çankaya, İ., & Şengün Ermeydan, E. (2022). MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1235-1248. https://doi.org/10.17482/uumfd.1125289
AMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ. UUJFE. December 2022;27(3):1235-1248. doi:10.17482/uumfd.1125289
Chicago Göktaş, Ömer Faruk, İlyas Çankaya, and Esra Şengün Ermeydan. “MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 3 (December 2022): 1235-48. https://doi.org/10.17482/uumfd.1125289.
EndNote Göktaş ÖF, Çankaya İ, Şengün Ermeydan E (December 1, 2022) MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1235–1248.
IEEE Ö. F. Göktaş, İ. Çankaya, and E. Şengün Ermeydan, “MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ”, UUJFE, vol. 27, no. 3, pp. 1235–1248, 2022, doi: 10.17482/uumfd.1125289.
ISNAD Göktaş, Ömer Faruk et al. “MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (December 2022), 1235-1248. https://doi.org/10.17482/uumfd.1125289.
JAMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ. UUJFE. 2022;27:1235–1248.
MLA Göktaş, Ömer Faruk et al. “MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 3, 2022, pp. 1235-48, doi:10.17482/uumfd.1125289.
Vancouver Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ. UUJFE. 2022;27(3):1235-48.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.