Research Article
BibTex RIS Cite

OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS

Year 2022, Volume: 27 Issue: 3, 1137 - 1146, 31.12.2022
https://doi.org/10.17482/uumfd.1176365

Abstract

This paper focuses on creating an optimum design and development of thermo-plunger parts for commercial vehicles in order to save material, reduce mass and make more sustainable automobiles. In this paper, natural frequency analysis, topology, and topography optimization methods have been used to create a new design for the thermo-plunger part. Thermo-plunger means an electric heater that is used for heating the inside of automobiles effectively and quickly and providing customer thermal comfort. It is positioned in the vehicle body, and its support parts have been developed by structural optimization techniques because there is not enough space in the engine compartment for automatic transmission commercial vehicles. The aim of this study is to make a lightweight and reinforced thermo-plunger support part design. Initially, a draft design was created in 3D model software. After that, topology and topography optimizations were applied on this draft design. At the end of studies, a final optimum support design has been obtained. The final design is 41.1% lighter than the initial design. At the same time, above 50 Hz natural frequency value has been obtained on the final design to avoid resonance problems. 

References

  • 1. Biyikli, E. and To, A.C. (2015) Proportional Topology Optimization: A New Non-Sensitivity Method for Solving Stress Constrained and Minimum Compliance Problems and Its Implementation in MATLAB, Plos One, 10, 1-23. doi: 10.1371/journal.pone.0145041
  • 2. Brennan, J. and Hayes, K. (2000) Recent Applications of Topology and Topography Optimization in Automotive Design, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2000-4709
  • 3. Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E. and Moruzzi, P. (2010) High performance automotive chassis design: a topology optimization based approach, Struct Multidisc Optim, 44, 45-56. doi: 10.1007/s00158-010-0578-7
  • 4. Cavazzuti, M., Splendi, L., D’Agostino, L., Torricelli, E., Costi, D. and Baldini, A. (2012) Structural Optimization of Automotive Chassis: Theory, Set Up, Design, Problemes inverses, Controle et Optimisation de Formes 6, 1-3.
  • 5. Costi, D., Torricelli, E., Splendi, L. and Pettazzoni, M. (2011) Optimization Methodology for an Automotive Hood Substructure Inner Panel, Proceedings of the World Congress on Engineering, 3, 1-4.
  • 6. Darge, S., Shilwant, S.C. and Patil, S.R. (2014) Finite Element Analysis and Topography Optimization of Lower Arm of Double Wishbone Suspension Using Abacus and Optistruct, International Journal of Engineering Research and Applications, 4(7), 112-117.
  • 7. Giechaskiel, B., Bertoa, R.S., Lahde, T., Clairotte, M., Carriero, M., Bonnel, P. and Maggiore, M. (2019) Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System, Atmosphere, 10(4). doi: 10.3390/atmos10040180
  • 8. Kim, H.G., Nerse, C. and Wang, S. (2019) Topography Optimization of an Enclosure Panel for Low-Frequency Noise and Vibration Reduction Using the Equivalent Radiated Power Approach, Materials & Design, 183. doi: 10.1016/j.matdes.2019.108125
  • 9. Kong, Y.S., Abdullah, S., Omar, M.Z. and Haris, S.M. (2016) Topological and Topographical Optimization of Automotive Spring Lower Seat, Latin American Journal of Solids and Structures, 13, 1388-1405. doi: 10.1590/1679-78252082
  • 10. Li, C., Kim, I.Y. and Jeswiet, J. (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization, Struct Multidisc Optim, 51, 547-564. doi: 10.1007/s00158-014-1151-6
  • 11. Mantovani, S., Presti, I.L., Cavazzoni, L. and Baldini, A. (2017) Influence of Manufacturing Constraints on the Topology Optimization of an Automotive Dashboard, Procedia Manufacturing, 11, 1700-1708.
  • 12. Shobeiri, V. (2016) Structural Topology Optimization Based on the Smoothed Finite Element Method, Latin American Journal of Solids and Structures, 13, 378-390. doi: 10.1590/1679-78252243
  • 13. Sigmund, O. (2011) On the Usefulness of Non-Gradient Approaches in Topology Optimization, Struct Multidisc Optim, 43, 589-596. doi: 10.1007/s00158-011-0638-7
  • 14. Torii, A.J., Novotny, A.A. and Santos R.B.D. (2016) Robust compliance topology optimization based on the topological derivative concept, International Journal for Numerical Methods In Engineering, 106, 889-903. doi: 10.1002/nme.5144
  • 15. Valverde, V., Mora, B.A., Clairotte, M., Pavlovic, J., Bertoa, R.S., Giechaskiel, B., Llorens, C.A. and Fontaras, G. (2019) Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements, Atmosphere, 10. doi: 10.3390/atmos10050243
  • 16. Yıldız, A.R., Kılıçarpa, U.A., Demirci, E. and Doğan, M. (2019) Topography and topology optimization of diesel engine components for light-weight design in the automotive industry, Materials Testing, 61 (2019), 27-34. doi: 10.3139/120.111277
  • 17. Zhuang, W., Zhang, X., Peng, H., and Wang L. (2016) Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains, Energies, 9. doi: 10.3390/en9060411

Yapısal Tasarım ve Sonlu Eleman Metodlarını Kullanarak Ticari Araçlardaki Termo-piston Destek Parçasının Optimum Tasarımı

Year 2022, Volume: 27 Issue: 3, 1137 - 1146, 31.12.2022
https://doi.org/10.17482/uumfd.1176365

Abstract

Bu makale, malzemeden tasarruf etmek, kütleyi azaltmak ve daha sürdürülebilir otomobiller yapmak üzere ticari araçlar için optimum bir termo-piston parçası tasarımı ve geliştirilmesine odaklanmaktadır. Bu makalede, termo-piston parçasında yeni tasarım oluşturmak için doğal frekans analizi, topoloji ve topografya optimizasyon yöntemleri kullanılmıştır. Termo-piston, otomobillerin içini etkin ve hızlı bir şekilde ısıtmak için kullanılan ve müşteriye ısıl konfor sağlayan elektrikli ısıtıcı anlamına gelir. Bu parça araç gövdesinde konumlandırılmış olup, otomatik şanzımanlı ticari araçlar için motor bölmesinde yeterli alan olmadığı için destek parçaları yapısal optimizasyon teknikleri ile geliştirilmiştir. Bu çalışmanın amacı, hafif ve güçlendirilmiş bir termo piston destek parçası tasarımı yapmaktır. İlk olarak 3B modelleme yazılımında taslak tasarım oluşturulmuştur. Daha sonra bu taslak tasarım üzerinde topoloji ve topografya optimizasyonları uygulanmıştır. Çalışmalar sonunda nihai bir optimum destek parça tasarımı elde edilmiştir. Nihai tasarım, ilk tasarıma göre %41.1 daha hafiftir. Aynı zamanda, rezonans sorununu önlemek için nihai tasarımda 50 Hz'in üzerinde doğal frekans değeri elde edilmiştir

References

  • 1. Biyikli, E. and To, A.C. (2015) Proportional Topology Optimization: A New Non-Sensitivity Method for Solving Stress Constrained and Minimum Compliance Problems and Its Implementation in MATLAB, Plos One, 10, 1-23. doi: 10.1371/journal.pone.0145041
  • 2. Brennan, J. and Hayes, K. (2000) Recent Applications of Topology and Topography Optimization in Automotive Design, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2000-4709
  • 3. Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E. and Moruzzi, P. (2010) High performance automotive chassis design: a topology optimization based approach, Struct Multidisc Optim, 44, 45-56. doi: 10.1007/s00158-010-0578-7
  • 4. Cavazzuti, M., Splendi, L., D’Agostino, L., Torricelli, E., Costi, D. and Baldini, A. (2012) Structural Optimization of Automotive Chassis: Theory, Set Up, Design, Problemes inverses, Controle et Optimisation de Formes 6, 1-3.
  • 5. Costi, D., Torricelli, E., Splendi, L. and Pettazzoni, M. (2011) Optimization Methodology for an Automotive Hood Substructure Inner Panel, Proceedings of the World Congress on Engineering, 3, 1-4.
  • 6. Darge, S., Shilwant, S.C. and Patil, S.R. (2014) Finite Element Analysis and Topography Optimization of Lower Arm of Double Wishbone Suspension Using Abacus and Optistruct, International Journal of Engineering Research and Applications, 4(7), 112-117.
  • 7. Giechaskiel, B., Bertoa, R.S., Lahde, T., Clairotte, M., Carriero, M., Bonnel, P. and Maggiore, M. (2019) Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System, Atmosphere, 10(4). doi: 10.3390/atmos10040180
  • 8. Kim, H.G., Nerse, C. and Wang, S. (2019) Topography Optimization of an Enclosure Panel for Low-Frequency Noise and Vibration Reduction Using the Equivalent Radiated Power Approach, Materials & Design, 183. doi: 10.1016/j.matdes.2019.108125
  • 9. Kong, Y.S., Abdullah, S., Omar, M.Z. and Haris, S.M. (2016) Topological and Topographical Optimization of Automotive Spring Lower Seat, Latin American Journal of Solids and Structures, 13, 1388-1405. doi: 10.1590/1679-78252082
  • 10. Li, C., Kim, I.Y. and Jeswiet, J. (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization, Struct Multidisc Optim, 51, 547-564. doi: 10.1007/s00158-014-1151-6
  • 11. Mantovani, S., Presti, I.L., Cavazzoni, L. and Baldini, A. (2017) Influence of Manufacturing Constraints on the Topology Optimization of an Automotive Dashboard, Procedia Manufacturing, 11, 1700-1708.
  • 12. Shobeiri, V. (2016) Structural Topology Optimization Based on the Smoothed Finite Element Method, Latin American Journal of Solids and Structures, 13, 378-390. doi: 10.1590/1679-78252243
  • 13. Sigmund, O. (2011) On the Usefulness of Non-Gradient Approaches in Topology Optimization, Struct Multidisc Optim, 43, 589-596. doi: 10.1007/s00158-011-0638-7
  • 14. Torii, A.J., Novotny, A.A. and Santos R.B.D. (2016) Robust compliance topology optimization based on the topological derivative concept, International Journal for Numerical Methods In Engineering, 106, 889-903. doi: 10.1002/nme.5144
  • 15. Valverde, V., Mora, B.A., Clairotte, M., Pavlovic, J., Bertoa, R.S., Giechaskiel, B., Llorens, C.A. and Fontaras, G. (2019) Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements, Atmosphere, 10. doi: 10.3390/atmos10050243
  • 16. Yıldız, A.R., Kılıçarpa, U.A., Demirci, E. and Doğan, M. (2019) Topography and topology optimization of diesel engine components for light-weight design in the automotive industry, Materials Testing, 61 (2019), 27-34. doi: 10.3139/120.111277
  • 17. Zhuang, W., Zhang, X., Peng, H., and Wang L. (2016) Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains, Energies, 9. doi: 10.3390/en9060411
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ulaş Aytaç Kılıçarpa 0000-0002-6855-9666

Betül Sultan Yıldız 0000-0002-7493-2068

Ali Rıza Yıldız 0000-0003-1790-6987

Early Pub Date December 9, 2022
Publication Date December 31, 2022
Submission Date September 16, 2022
Acceptance Date November 28, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Kılıçarpa, U. A., Yıldız, B. S., & Yıldız, A. R. (2022). OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1137-1146. https://doi.org/10.17482/uumfd.1176365
AMA Kılıçarpa UA, Yıldız BS, Yıldız AR. OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS. UUJFE. December 2022;27(3):1137-1146. doi:10.17482/uumfd.1176365
Chicago Kılıçarpa, Ulaş Aytaç, Betül Sultan Yıldız, and Ali Rıza Yıldız. “OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 3 (December 2022): 1137-46. https://doi.org/10.17482/uumfd.1176365.
EndNote Kılıçarpa UA, Yıldız BS, Yıldız AR (December 1, 2022) OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1137–1146.
IEEE U. A. Kılıçarpa, B. S. Yıldız, and A. R. Yıldız, “OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS”, UUJFE, vol. 27, no. 3, pp. 1137–1146, 2022, doi: 10.17482/uumfd.1176365.
ISNAD Kılıçarpa, Ulaş Aytaç et al. “OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (December 2022), 1137-1146. https://doi.org/10.17482/uumfd.1176365.
JAMA Kılıçarpa UA, Yıldız BS, Yıldız AR. OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS. UUJFE. 2022;27:1137–1146.
MLA Kılıçarpa, Ulaş Aytaç et al. “OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 3, 2022, pp. 1137-46, doi:10.17482/uumfd.1176365.
Vancouver Kılıçarpa UA, Yıldız BS, Yıldız AR. OPTIMUM DESIGN OF THERMO-PLUNGER SUPPORT IN COMMERCIAL VEHICLES BY USING STRUCTURAL DESIGN AND FINITE ELEMENT METHODS. UUJFE. 2022;27(3):1137-46.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.