Research Article
BibTex RIS Cite

DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS

Year 2023, Volume: 28 Issue: 1, 107 - 122, 30.04.2023
https://doi.org/10.17482/uumfd.1164004

Abstract

In this study, firstly, a general-purpose test simulator circuit was developed that could test the response of the circuits used in power electronic systems on hardware under various operating conditions (hardware in the loop). In the next step, a control board to be used for Shunt Active Power Filters (SAPF) was designed. The control software for SAPF was prepared using CubeMX IDE compiler for two different harmonic extraction methods using instantaneous reactive power theory (IRPT) and synchronous rotating reference frame (SRF) methods. Finally, before connecting the prototype SAPF control board and software to the real system, it had been verified to work safely using the designed test system. With this study, both the SAPF prototype circuit was prepared and a cost-effective system that could be found in the market was designed.

Supporting Institution

Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Birimi

Thanks

This work is supported by the Scientific Research Projects Commission of Kütahya Dumlupınar University with the project number of 2020-16.

References

  • 1. Assiene Mouodo, L. V., Mahamat ALI, A. H., Tamba, J. G., and Olivier, T. S. M. (2022). Comparison and classification of six reference currents extraction algorithms for harmonic compensation on a stochastic power network: Case of the TLC hybrid filter, Cogent Engineering, 9(1), doi:10.1080/23311916.2022.2076322.
  • 2. Arya, S. R., and Singh, B. (2014). Power quality improvement under nonideal AC mains in distribution system, Electric Power Systems Research, 106, 86-94, doi:10.1016/j.epsr.2013.08.008.
  • 3. Balikci, A., Hafezi, H., and Akpınar, E. (2022). Cascaded controller for single-phase shunt active power filter and STATCOM, International Journal of Renewable Energy Technology, 13(1), 28-47, doi:10.1504/IJRET.2022.120329.
  • 4. Bhattacharya, A., Chakraborty, C., and Bhattacharya, S. (2009). Shunt compensation, IEEE Industrial Electronics Magazine, 3(3), 38–49. doi: 10.1109/MIE.2009.933881.
  • 5. Bouscayrol, A. (2010). Hardware-In-the-Loop simulation, in Industrial Elecronics Handbooks, 2nd ed. Chicago, IL, USA: Taylor & Francis, tome 3, ch. M35, Dec. 2010.
  • 6. Corradini, L., Stefanutti, W., and Mattavelli, P. (2008). Analysis of multisampled current control for active filters, IEEE Transactions on Industry Applications, 44(6), 1785–1794. doi: 10.1109/TIA.2008.2006327.
  • 7. Costa-Castello, R., Grino, R., Parpal, R.C., and Fossas, E. (2009). High-performance control of a single-phase shunt active filter, IEEE Transactions on Control Systems Technology, 17(6), 1318–1329. doi:10.1109/TCST.2008.2007494.
  • 8. Çolak, İ., Bayindir, R., Irmak, E., and Kaplan, O. (2011). A comparative study of harmonic extraction methods for single phase shunt active power filter, In 2011 International Conference on Power Engineering, Energy and Electrical Drives,1-4, doi:10.1109/PowerEng.2011.6036515.
  • 9. El-Kholy, E.E., El-Sabbe, A., and Ei-Hefnawy, A. (2006). Three-phase active power filter based on current controlled voltage source inverter, International Journal of Electrical Power & Energy Systems, 28(8), 537–547. doi: 10.1016/j.ijepes.2006.01.007.
  • 10. Kale, M., and Özdemir, E. (2015). A new hysteresis band current control technique for a shunt active filter, Turkish Journal of Electrical Engineering and Computer Sciences, 23(3), 654-665, doi:10.3906/elk-1303-74.
  • 11. Karimi, S., Poure, P. and Saadate, S. (2010). An HIL-Based Reconfigurable Platform for Design, Implementation, and Verification of Electrical System Digital Controllers,", IEEE Transactions on Industrial Electronics, 57(4), 1226-1236, April. doi:10.1109/TIE.2009.2036644.
  • 12. Kumar, R., and Bansal, H. O. (2019). Real‐time implementation of adaptive PV‐ integrated SAPF to enhance power quality, International Transactions on Electrical Energy Systems, 29(5), e12004, doi:10.1002/2050-7038.12004.
  • 13. Kükrer, O., Kömürcügil, H., Guzman, R., and de Vicuna, L. G. (2020). A new control strategy for three-phase shunt active power filters based on FIR prediction. IEEE Transactions on Industrial Electronics, 68(9), 7702-7713, doi:10.1109/TIE.2020.3013761.
  • 14. Kürker, F., and Taşaltın, R. (2016). Elektrik Tesislerinde Harmoniklerin Meydana Getirdiği Kayıpların Analizi, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 21-38.
  • 15. Lauss, G., and Strunz, K. (2021). Accurate and Stable Hardware-in-the-Loop (HIL) RealTime Simulation of Integrated Power Electronics and Power Systems, IEEE Transactions on Power Electronics, 36(9), 10920-10932, Sept. doi:10.1109/TPEL.2020.3040071.
  • 16. Mehrasa, M., Pouresmaeil, E., Zabihi, S., Rodrigues, E. M., and Catalão, J. P. (2016). A control strategy for the stable operation of shunt active power filters in power grids, Energy, 96, 325-334. doi:0.1016/j.energy.2015.12.075.
  • 17. Mohd Zainuri, M. A. A., Mohd Radzi, M. A., Che Soh, A., Mariun, N., Abd Rahim, N., Teh, J., and Lai, C. M. (2018). Photovoltaic integrated shunt active power filter with simpler ADALINE algorithm for current harmonic extraction, Energies, 11(5), 1152, doi:10.3390/en11051152.
  • 18. Nassif, A.B., Wilsun, X., and Freitas, W. (2009). An investigation on the selection of filter topologies for passive filter applications, IEEE Transactions on Power Delivery, 24(3), 1710–1718. doi: 10.1109/TPWRD.2009.2016824.
  • 19. Patnaik, S.S., and Panda, A.K. (2013). Three-level H-bridge and three H-bridges-based threephase four-wire shunt active power filter topologies for high voltage applications, International Journal of Electrical Power & Energy Systems, 51, 298–306. doi: 10.1016/j.ijepes.2013.02.037.
  • 20. Patnaik, S. S., and Panda, A. K. (2014). Optimizing current harmonics compensation in three-phase power systems with an Enhanced Bacterial foraging approach, International Journal of Electrical Power & Energy Systems, 61, 386-398, doi:10.1016/j.ijepes.2014.03.05.
  • 21. Peng, F.Z., Akagi, H., and Nabae, A. (1990). A new approach to harmonic compensation in power-systems – a combined system of shunt passive and series active-filters, IEEE Transactions on Industry Applications, 26(6), 983–990. doi: 10.1109/28.62380.
  • 22. Singh, B., Al-Haddad, K., and Chandra, A. (1999). A review of active filters for power quality improvement, IEEE Transactions on Industrial Electronics, 46(5), 960–971. doi: 10.1109/41.793345.
  • 23. Tan, A., Köroğlu, T., Demırdelen, T., İncı, M., Cuma, M. U., Bayindir, K. Ç., and Tümay, M. (2015). Performance investigation of shunt hybrid active power filter with a synchronous reference frame based controller. In 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 1-8), doi:10.1109/PEDG.2015.7223031.
  • 24. Tangtheerajaroonwong, W., Hatada T., Wada K., and Akagi, H. (2007). Design and performance of a transformerless shunt hybrid filter integrated into a threephase diode rectifier, IEEE Transactions on Power Electronics, 22(5), 1882–1889. doi: 10.1109/TPEL.2007.904166.
  • 25. Tsengenes, G., and Adamidis, G. (2011). A multi-function grid connected PV system with three level NPC inverter and voltage oriented control, Solar Energy, 85(11), 2595-2610. doi:10.1016/j.solener.2011.07.017.
  • 26. Vardar, K., Akpınar, E., and Surgevil, T. (2009). Evaluation of reference current extraction methods for DSP implementation in active power filters, Electric Power Systems Research, 79(10), 1342-1352, doi:10.1016/j.epsr.2009.04.004.
  • 27. Verne, S. A., and Valla, M. I. (2010). Active power filter for medium voltage networks with predictive current control, Electric Power Systems Research, 80(12), 1543-1551, doi:10.1016/j.epsr.2010.06.019.
  • 28. Wei L., Chunwen, L., and Changbo, X. (2014). Sliding mode control of a shunt hybrid active power filter based on the inverse system method, International Journal of Electrical Power & Energy Systems, 57, 39-48. doi:10.1016/j.ijepes.2011.10.029.
  • 29. Yarıkkaya, S., and Vardar, K. (2020). Rapid Prototype Development of Single-Phase GridConnected PV Inverter Using STM32F4 and Matlab, Avrupa Bilim ve Teknoloji Dergisi, 18,213- 223. doi:10.31590/ejosat.680586.
  • 30. Zhou, Z.F., and Liu, Y.Z. (2012). Pre-sampled data based prediction control for active power filters, International Journal of Electrical Power & Energy Systems, 37(1), 13–22. doi:10.1016/j.ijepes.2011.10.029.

Güç Elektroniği Sistemleri için HIL (Hardware In The Loop) Simülatör Kartı Tasarımı ve Aktif Güç Filtreleri için Uygulanması

Year 2023, Volume: 28 Issue: 1, 107 - 122, 30.04.2023
https://doi.org/10.17482/uumfd.1164004

Abstract

Bu çalışmada, ilk olarak güç elektroniği sistemlerinde kullanılan devrelerin donanım üzerinde çeşitli çalışma şartlarındaki tepkilerini test edebilecek (hardware in the loop) bir genel amaçlı test simülatör devresi geliştirilmiştir. Sonraki aşamada, PAGF için kullanılacak bir kontrol kartı tasarlanmıştır. PAGF için anlık reaktif güç teorisi (IRPT) ve senkron dönen referans çerçeve (SRF) metotlarını kullanan 2 farklı harmonik çıkarım metodu için kontrol yazılımı CubeMX IDE derleyicisi kullanılarak hazırlanmıştır. Son olarak, oluşturulan prototip PAGF kontrol kartı ve yazılımı gerçek sisteme bağlamadan önce tasarlanan test sistemini kullanarak güvenli bir şekilde çalıştığı doğrulanmıştır. Bu çalışma ile hem PAGF prototip devresi hazırlanmış hem de bir donanım test simülatör sistemi uygun maliyetli olarak tasarlanmıştır.

References

  • 1. Assiene Mouodo, L. V., Mahamat ALI, A. H., Tamba, J. G., and Olivier, T. S. M. (2022). Comparison and classification of six reference currents extraction algorithms for harmonic compensation on a stochastic power network: Case of the TLC hybrid filter, Cogent Engineering, 9(1), doi:10.1080/23311916.2022.2076322.
  • 2. Arya, S. R., and Singh, B. (2014). Power quality improvement under nonideal AC mains in distribution system, Electric Power Systems Research, 106, 86-94, doi:10.1016/j.epsr.2013.08.008.
  • 3. Balikci, A., Hafezi, H., and Akpınar, E. (2022). Cascaded controller for single-phase shunt active power filter and STATCOM, International Journal of Renewable Energy Technology, 13(1), 28-47, doi:10.1504/IJRET.2022.120329.
  • 4. Bhattacharya, A., Chakraborty, C., and Bhattacharya, S. (2009). Shunt compensation, IEEE Industrial Electronics Magazine, 3(3), 38–49. doi: 10.1109/MIE.2009.933881.
  • 5. Bouscayrol, A. (2010). Hardware-In-the-Loop simulation, in Industrial Elecronics Handbooks, 2nd ed. Chicago, IL, USA: Taylor & Francis, tome 3, ch. M35, Dec. 2010.
  • 6. Corradini, L., Stefanutti, W., and Mattavelli, P. (2008). Analysis of multisampled current control for active filters, IEEE Transactions on Industry Applications, 44(6), 1785–1794. doi: 10.1109/TIA.2008.2006327.
  • 7. Costa-Castello, R., Grino, R., Parpal, R.C., and Fossas, E. (2009). High-performance control of a single-phase shunt active filter, IEEE Transactions on Control Systems Technology, 17(6), 1318–1329. doi:10.1109/TCST.2008.2007494.
  • 8. Çolak, İ., Bayindir, R., Irmak, E., and Kaplan, O. (2011). A comparative study of harmonic extraction methods for single phase shunt active power filter, In 2011 International Conference on Power Engineering, Energy and Electrical Drives,1-4, doi:10.1109/PowerEng.2011.6036515.
  • 9. El-Kholy, E.E., El-Sabbe, A., and Ei-Hefnawy, A. (2006). Three-phase active power filter based on current controlled voltage source inverter, International Journal of Electrical Power & Energy Systems, 28(8), 537–547. doi: 10.1016/j.ijepes.2006.01.007.
  • 10. Kale, M., and Özdemir, E. (2015). A new hysteresis band current control technique for a shunt active filter, Turkish Journal of Electrical Engineering and Computer Sciences, 23(3), 654-665, doi:10.3906/elk-1303-74.
  • 11. Karimi, S., Poure, P. and Saadate, S. (2010). An HIL-Based Reconfigurable Platform for Design, Implementation, and Verification of Electrical System Digital Controllers,", IEEE Transactions on Industrial Electronics, 57(4), 1226-1236, April. doi:10.1109/TIE.2009.2036644.
  • 12. Kumar, R., and Bansal, H. O. (2019). Real‐time implementation of adaptive PV‐ integrated SAPF to enhance power quality, International Transactions on Electrical Energy Systems, 29(5), e12004, doi:10.1002/2050-7038.12004.
  • 13. Kükrer, O., Kömürcügil, H., Guzman, R., and de Vicuna, L. G. (2020). A new control strategy for three-phase shunt active power filters based on FIR prediction. IEEE Transactions on Industrial Electronics, 68(9), 7702-7713, doi:10.1109/TIE.2020.3013761.
  • 14. Kürker, F., and Taşaltın, R. (2016). Elektrik Tesislerinde Harmoniklerin Meydana Getirdiği Kayıpların Analizi, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 21-38.
  • 15. Lauss, G., and Strunz, K. (2021). Accurate and Stable Hardware-in-the-Loop (HIL) RealTime Simulation of Integrated Power Electronics and Power Systems, IEEE Transactions on Power Electronics, 36(9), 10920-10932, Sept. doi:10.1109/TPEL.2020.3040071.
  • 16. Mehrasa, M., Pouresmaeil, E., Zabihi, S., Rodrigues, E. M., and Catalão, J. P. (2016). A control strategy for the stable operation of shunt active power filters in power grids, Energy, 96, 325-334. doi:0.1016/j.energy.2015.12.075.
  • 17. Mohd Zainuri, M. A. A., Mohd Radzi, M. A., Che Soh, A., Mariun, N., Abd Rahim, N., Teh, J., and Lai, C. M. (2018). Photovoltaic integrated shunt active power filter with simpler ADALINE algorithm for current harmonic extraction, Energies, 11(5), 1152, doi:10.3390/en11051152.
  • 18. Nassif, A.B., Wilsun, X., and Freitas, W. (2009). An investigation on the selection of filter topologies for passive filter applications, IEEE Transactions on Power Delivery, 24(3), 1710–1718. doi: 10.1109/TPWRD.2009.2016824.
  • 19. Patnaik, S.S., and Panda, A.K. (2013). Three-level H-bridge and three H-bridges-based threephase four-wire shunt active power filter topologies for high voltage applications, International Journal of Electrical Power & Energy Systems, 51, 298–306. doi: 10.1016/j.ijepes.2013.02.037.
  • 20. Patnaik, S. S., and Panda, A. K. (2014). Optimizing current harmonics compensation in three-phase power systems with an Enhanced Bacterial foraging approach, International Journal of Electrical Power & Energy Systems, 61, 386-398, doi:10.1016/j.ijepes.2014.03.05.
  • 21. Peng, F.Z., Akagi, H., and Nabae, A. (1990). A new approach to harmonic compensation in power-systems – a combined system of shunt passive and series active-filters, IEEE Transactions on Industry Applications, 26(6), 983–990. doi: 10.1109/28.62380.
  • 22. Singh, B., Al-Haddad, K., and Chandra, A. (1999). A review of active filters for power quality improvement, IEEE Transactions on Industrial Electronics, 46(5), 960–971. doi: 10.1109/41.793345.
  • 23. Tan, A., Köroğlu, T., Demırdelen, T., İncı, M., Cuma, M. U., Bayindir, K. Ç., and Tümay, M. (2015). Performance investigation of shunt hybrid active power filter with a synchronous reference frame based controller. In 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 1-8), doi:10.1109/PEDG.2015.7223031.
  • 24. Tangtheerajaroonwong, W., Hatada T., Wada K., and Akagi, H. (2007). Design and performance of a transformerless shunt hybrid filter integrated into a threephase diode rectifier, IEEE Transactions on Power Electronics, 22(5), 1882–1889. doi: 10.1109/TPEL.2007.904166.
  • 25. Tsengenes, G., and Adamidis, G. (2011). A multi-function grid connected PV system with three level NPC inverter and voltage oriented control, Solar Energy, 85(11), 2595-2610. doi:10.1016/j.solener.2011.07.017.
  • 26. Vardar, K., Akpınar, E., and Surgevil, T. (2009). Evaluation of reference current extraction methods for DSP implementation in active power filters, Electric Power Systems Research, 79(10), 1342-1352, doi:10.1016/j.epsr.2009.04.004.
  • 27. Verne, S. A., and Valla, M. I. (2010). Active power filter for medium voltage networks with predictive current control, Electric Power Systems Research, 80(12), 1543-1551, doi:10.1016/j.epsr.2010.06.019.
  • 28. Wei L., Chunwen, L., and Changbo, X. (2014). Sliding mode control of a shunt hybrid active power filter based on the inverse system method, International Journal of Electrical Power & Energy Systems, 57, 39-48. doi:10.1016/j.ijepes.2011.10.029.
  • 29. Yarıkkaya, S., and Vardar, K. (2020). Rapid Prototype Development of Single-Phase GridConnected PV Inverter Using STM32F4 and Matlab, Avrupa Bilim ve Teknoloji Dergisi, 18,213- 223. doi:10.31590/ejosat.680586.
  • 30. Zhou, Z.F., and Liu, Y.Z. (2012). Pre-sampled data based prediction control for active power filters, International Journal of Electrical Power & Energy Systems, 37(1), 13–22. doi:10.1016/j.ijepes.2011.10.029.

Details

Primary Language English
Subjects Software Engineering, Electrical Engineering
Journal Section Research Articles
Authors

Ferzende TEKÇE 0000-0002-3563-4914

Kadir VARDAR 0000-0002-0197-0215

Project Number 2020-16
Publication Date April 30, 2023
Submission Date August 18, 2022
Acceptance Date January 11, 2023
Published in Issue Year 2023 Volume: 28 Issue: 1

Cite

APA TEKÇE, F., & VARDAR, K. (2023). DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 107-122. https://doi.org/10.17482/uumfd.1164004
AMA TEKÇE F, VARDAR K. DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS. UUJFE. April 2023;28(1):107-122. doi:10.17482/uumfd.1164004
Chicago TEKÇE, Ferzende, and Kadir VARDAR. “DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 1 (April 2023): 107-22. https://doi.org/10.17482/uumfd.1164004.
EndNote TEKÇE F, VARDAR K (April 1, 2023) DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 107–122.
IEEE F. TEKÇE and K. VARDAR, “DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS”, UUJFE, vol. 28, no. 1, pp. 107–122, 2023, doi: 10.17482/uumfd.1164004.
ISNAD TEKÇE, Ferzende - VARDAR, Kadir. “DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (April 2023), 107-122. https://doi.org/10.17482/uumfd.1164004.
JAMA TEKÇE F, VARDAR K. DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS. UUJFE. 2023;28:107–122.
MLA TEKÇE, Ferzende and Kadir VARDAR. “DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 1, 2023, pp. 107-22, doi:10.17482/uumfd.1164004.
Vancouver TEKÇE F, VARDAR K. DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS. UUJFE. 2023;28(1):107-22.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.