Research Article
BibTex RIS Cite

OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ

Year 2023, Volume: 28 Issue: 2, 579 - 596, 31.08.2023
https://doi.org/10.17482/uumfd.1247397

Abstract

İçme sularının dezenfeksiyon maliyetleri kentleşme, nüfus artışı ve yüksek enerji kullanımı nedeniyle her geçen gün artmaktadır. Ozon ile içme sularının dezenfeksiyonu ön dezenfeksiyon yöntemi olarak ülkemizde bazı içme suyu arıtma tesislerinde kullanılmakta olup Dünya’da giderek yaygınlaşmaktadır. Ülkemizde de yakın zamanda ozonla dezenfeksiyon sürecinin yaygınlaşacağı beklenmektedir. Bu çalışmada, bir içme suyu arıtma tesisinde bulunan ozon temas tankının hidrolik ve karışım verimleri sayısal benzetimler ile değerlendirilmiştir. OpenFOAM açık kaynak kodlu yazılımı kullanılarak gerçekleştirilen sayısal benzetimler ile öncelikle akım yapısı detaylı olarak incelenmiştir. Daha sonra, Üç Yarıklı Perde (ÜYP) ve Gözenekli Perde (GP) tasarımları tank içerisinde uygulanarak akım yapısındaki değişimler elde edilmiştir. Çalışmanın son bölümünde bozunmasız izleyici sayısal benzetimleri ile tankın hidrolik ve karışım verimleri Klasik Perde (KP), ÜYP ve GP tasarımları için ayrı ayrı değerlendirilerek tankın verim artışı değerlendirilmiştir.

References

  • 1. Angeloudis, A., Stoesser, T., Falconer, R.A. ve Kim, D. (2015) Flow, transport and disinfection performance in small- and full-scale contact tanks, Journal of Hydro-Environment Research, 9(1), 15–27.
  • 2. Angeloudis, A., Stoesser, T., Gualtieri, C. ve Falconer, R.A. (2016) Contact tank design ımpact on process performance, Environmental Modeling & Assessment, 21(5), 563–576.
  • 3. Alzahrani, A., Ullah, M.Z., Alshomrani, A.S. ve Gul, T. (2021) Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation, Case Studies in Thermal Engineering, 26.
  • 4. Aral, M. M. ve Demirel, E. (2017) Novel slot-baffle design to ımprove mixing efficiency and reduce cost of disinfection in drinking water treatment, Journal of Environmental Engineering, 143(9), 1–5. 2017.
  • 5. Domaingo, A., Langmayr, D., Somogyi, B. ve Almbauer, R. (2016) A semi-implicit treatment of porous media in steady-state CFD, Transport in Porous Media, 112(2), 451–466.
  • 6. Farooq, U., Ahsan, M.I., Khan, M.I, Isa, S.S.P.M. ve Lu, D.C. (2020) Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media, International Communications in Heat and Mass Transfer, 119, 104955.
  • 7. Khan, M.I., Alzahrani, F. ve Hobiny, A. (2020) Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy–Forchheimer porous medium, Journal of Materials Research and Technology, 9(4), 7335-7340.
  • 8. Kizilaslan, M. A., Demirel, E. ve Aral, M. M. (2018) Effect of porous baffles on the energy performance of contact tanks in water treatment, Water, 10(8), 1084. 2018.
  • 9. Kizilaslan, M. A., Demirel, E. ve Aral, M. M. (2019) Efficiency enhancement of chlorine contact tanks in water treatment plants: a full-scale application, Processes, 7(9), 551. 2019.
  • 10. Kizilaslan, M. A., Nasyrlayev, N., Kurumus, A. T., Savas, H., E. Demirel ve Aral, M. M. (2020) Experimental and numerical evaluation of a porous baffle design for contact tanks, Journal of Environmental Engineering, 146(7).
  • 11. Launder, B.E. ve Spalding, D.B. (1974) The numerical computation of turbulent flows, Comput.Methods in Appl.Mech.Eng, 3(2), 269-289.
  • 12. Nasyrlayev, N., Kizilaslan, M.A., Kurumus, A.T., Demirel, E. ve M. M. Aral (2020) A perforated baffle design to improve mixing in contact tanks, Water, 12(4), 1022. 13. Nasyrlayev, N. ve Demirel, E. (2022) Design optimization of the porous baffle in a disinfection contact tank for high efficiency, Urban Water Journal, 19(7).
  • 14. Niazi S., Kalbasi, M. ve Bahramian A. (2017) Hydraulic and disinfection efficiency of an ozonation contactor for a municipal water treatment plant using computational fluid Dynamics, Canadian Journal of Chemical Engineering, 95(11), 2063–2072.
  • 15. Rauen, W. B., Angeloudis, A. ve Falconer, R. A. (2012) Appraisal of chlorine contact tank modelling practices, Water Research, 46(18), 5834–5847.
  • 16. Stefano, G. M. D. (2014) Modeling thermal energy storage systems with Open∇FOAM, Doktora tezi, Politecnico di Milano, Italy.
  • 17. Teixeira, E.C. ve Siqueira, R. D. N. (2008) Performance assessment of hydraulic efficiency indexes, Journal of Environmental Engineering, 134(10), 851–859.
  • 18. US EPA, (2003). Disinfection profiling and benchmarking guidance manual. Appendix A Rep. No. EPA 816-R-03-004 EPA, United States Environmental Protection Agency.
  • 19. Xiong, F., Jiang, Y., Zhu, C., Teng, L., Cheng, H. ve Wang, Y. (2022). A Coupled Darcy-Forchheimer Flow Model in Fractured Porous Media, Applied Sciences, 13(1), 344.
  • 20. Yang, J., Li, J., Zhu, J., Dong, Z., Luo, F., Wang, Y., Liu, H., Jiang, C. ve Yuan, H. (2017) A novel design for an ozone contact reactor and its performance on hydrodynamics, disinfection, bromate formation and oxidation, Chemical Engineering Journal, 328, 207–214.

Improvement of Hydraulic and Mixing Efficiency of Ozone Contact Tanks

Year 2023, Volume: 28 Issue: 2, 579 - 596, 31.08.2023
https://doi.org/10.17482/uumfd.1247397

Abstract

Disinfection costs of drinking water are increasing day by day due to urbanization, population growth and high energy use. Ozone is used as a pre-disinfection method for the disinfection of drinking water in some drinking water treatment plants in Turkey and becoming increasingly common in the world. It is expected that the disinfection process with ozone will become widespread in in the near future. In this study, the hydraulic and mixing efficiencies of the ozone contact tank in a drinking water treatment facility were evaluated by means of numerical simulations. The flow structure was first examined in detail based on the numerical simulation results from OpenFOAM open-source software. Then, Slot Baffle (SBD) and Porous Baffle (PBD) designs were implemented to the tank for the enhancement of hydraulic and mixing efficiencies. Eventually, the hydraulic and mixing efficiencies were assessed based on the tracer simulations for Conventional Baffle (CBD), SBD and PBD designs.

References

  • 1. Angeloudis, A., Stoesser, T., Falconer, R.A. ve Kim, D. (2015) Flow, transport and disinfection performance in small- and full-scale contact tanks, Journal of Hydro-Environment Research, 9(1), 15–27.
  • 2. Angeloudis, A., Stoesser, T., Gualtieri, C. ve Falconer, R.A. (2016) Contact tank design ımpact on process performance, Environmental Modeling & Assessment, 21(5), 563–576.
  • 3. Alzahrani, A., Ullah, M.Z., Alshomrani, A.S. ve Gul, T. (2021) Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation, Case Studies in Thermal Engineering, 26.
  • 4. Aral, M. M. ve Demirel, E. (2017) Novel slot-baffle design to ımprove mixing efficiency and reduce cost of disinfection in drinking water treatment, Journal of Environmental Engineering, 143(9), 1–5. 2017.
  • 5. Domaingo, A., Langmayr, D., Somogyi, B. ve Almbauer, R. (2016) A semi-implicit treatment of porous media in steady-state CFD, Transport in Porous Media, 112(2), 451–466.
  • 6. Farooq, U., Ahsan, M.I., Khan, M.I, Isa, S.S.P.M. ve Lu, D.C. (2020) Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media, International Communications in Heat and Mass Transfer, 119, 104955.
  • 7. Khan, M.I., Alzahrani, F. ve Hobiny, A. (2020) Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy–Forchheimer porous medium, Journal of Materials Research and Technology, 9(4), 7335-7340.
  • 8. Kizilaslan, M. A., Demirel, E. ve Aral, M. M. (2018) Effect of porous baffles on the energy performance of contact tanks in water treatment, Water, 10(8), 1084. 2018.
  • 9. Kizilaslan, M. A., Demirel, E. ve Aral, M. M. (2019) Efficiency enhancement of chlorine contact tanks in water treatment plants: a full-scale application, Processes, 7(9), 551. 2019.
  • 10. Kizilaslan, M. A., Nasyrlayev, N., Kurumus, A. T., Savas, H., E. Demirel ve Aral, M. M. (2020) Experimental and numerical evaluation of a porous baffle design for contact tanks, Journal of Environmental Engineering, 146(7).
  • 11. Launder, B.E. ve Spalding, D.B. (1974) The numerical computation of turbulent flows, Comput.Methods in Appl.Mech.Eng, 3(2), 269-289.
  • 12. Nasyrlayev, N., Kizilaslan, M.A., Kurumus, A.T., Demirel, E. ve M. M. Aral (2020) A perforated baffle design to improve mixing in contact tanks, Water, 12(4), 1022. 13. Nasyrlayev, N. ve Demirel, E. (2022) Design optimization of the porous baffle in a disinfection contact tank for high efficiency, Urban Water Journal, 19(7).
  • 14. Niazi S., Kalbasi, M. ve Bahramian A. (2017) Hydraulic and disinfection efficiency of an ozonation contactor for a municipal water treatment plant using computational fluid Dynamics, Canadian Journal of Chemical Engineering, 95(11), 2063–2072.
  • 15. Rauen, W. B., Angeloudis, A. ve Falconer, R. A. (2012) Appraisal of chlorine contact tank modelling practices, Water Research, 46(18), 5834–5847.
  • 16. Stefano, G. M. D. (2014) Modeling thermal energy storage systems with Open∇FOAM, Doktora tezi, Politecnico di Milano, Italy.
  • 17. Teixeira, E.C. ve Siqueira, R. D. N. (2008) Performance assessment of hydraulic efficiency indexes, Journal of Environmental Engineering, 134(10), 851–859.
  • 18. US EPA, (2003). Disinfection profiling and benchmarking guidance manual. Appendix A Rep. No. EPA 816-R-03-004 EPA, United States Environmental Protection Agency.
  • 19. Xiong, F., Jiang, Y., Zhu, C., Teng, L., Cheng, H. ve Wang, Y. (2022). A Coupled Darcy-Forchheimer Flow Model in Fractured Porous Media, Applied Sciences, 13(1), 344.
  • 20. Yang, J., Li, J., Zhu, J., Dong, Z., Luo, F., Wang, Y., Liu, H., Jiang, C. ve Yuan, H. (2017) A novel design for an ozone contact reactor and its performance on hydrodynamics, disinfection, bromate formation and oxidation, Chemical Engineering Journal, 328, 207–214.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mehmet Anıl Kızılaslan 0000-0002-0621-4646

Ender Demirel 0000-0002-0440-7866

Early Pub Date August 25, 2023
Publication Date August 31, 2023
Submission Date February 3, 2023
Acceptance Date August 9, 2023
Published in Issue Year 2023 Volume: 28 Issue: 2

Cite

APA Kızılaslan, M. A., & Demirel, E. (2023). OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 579-596. https://doi.org/10.17482/uumfd.1247397
AMA Kızılaslan MA, Demirel E. OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ. UUJFE. August 2023;28(2):579-596. doi:10.17482/uumfd.1247397
Chicago Kızılaslan, Mehmet Anıl, and Ender Demirel. “OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 2 (August 2023): 579-96. https://doi.org/10.17482/uumfd.1247397.
EndNote Kızılaslan MA, Demirel E (August 1, 2023) OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 2 579–596.
IEEE M. A. Kızılaslan and E. Demirel, “OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ”, UUJFE, vol. 28, no. 2, pp. 579–596, 2023, doi: 10.17482/uumfd.1247397.
ISNAD Kızılaslan, Mehmet Anıl - Demirel, Ender. “OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/2 (August 2023), 579-596. https://doi.org/10.17482/uumfd.1247397.
JAMA Kızılaslan MA, Demirel E. OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ. UUJFE. 2023;28:579–596.
MLA Kızılaslan, Mehmet Anıl and Ender Demirel. “OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 2, 2023, pp. 579-96, doi:10.17482/uumfd.1247397.
Vancouver Kızılaslan MA, Demirel E. OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ. UUJFE. 2023;28(2):579-96.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.