Research Article
BibTex RIS Cite

Dikişli Basınç Çorabı Geliştirilmesi ve Mevcut Matematiksel Modelleri Kullanarak Sınıf I Çorapları ile Karşılaştırılması

Year 2023, Volume: 28 Issue: 3, 741 - 760, 27.12.2023
https://doi.org/10.17482/uumfd.1268849

Abstract

Kompresyon tedavisi, venöz ödem ve venöz hipertansiyon gibi venöz hastalıkların tedavisinde önemli bir yöntemdir. Kompresyon terapötik tekniğinin düzenli kullanımının temel amacı, kan akışını nihai olarak düzenleyerek bacak şişmesini azaltmak ve geri dönüşlü kan akışının tekrar oluşmasını önlemektir. Çoğunlukla kompresyon çorapları terapötik giysi olarak tavsiye edilir. Bu çalışmada, interlok örgü yapısındaki kumaş kullanılarak dikişli bir kompresyon çorabı geliştirilmiştir. Üretilen çorabı karşılaştırmak için yuvarlak örgü MERZ CC4 model makinesi kullanılarak üç çorap örneği üretilmiştir. Sonuçlar, geliştirilen çorabın kompresyon sınıfı I'in tüm gereksinimlerini karşıladığını göstermektedir. İstatistiksel analizler, kumaş parametrelerinin, özellikle de kumaş ağırlığının, belirleme katsayısı, korelasyon katsayısı (r) ve hataların karelerinin toplamı (MSE) değerlerine göre sıkıştırma basıncı yoğunluğunu etkili bir şekilde açıkladığını ortaya koymaktadır. Bu araştırmada dikişli kompresyon çoraplarının ve geleneksel kompresyon çoraplarının kompresyon basıncını tahmin etmek için Laplace Yasası ile seçilmiş mevcut matematiksel modeller kullanılmıştır ve benzer sonuçlar sergiledikleri görülmüştür. Veri noktalarının regresyon çizgisi etrafındaki dağılımı çok yakın olduğu görülmüştür. Bu da dikişli çorapların sıkıştırma basıncında daha yüksek bir sapma göstermediğini belirtmektedir.

References

  • 1. Attaran, R. R. and Ochoa Chaar, C. I. (2017) Compression therapy for venous disease, Phlebology: The Journal of Venous Disease, 32(2), 81–88. doi:10.1177/0268355516633382
  • 2. Bera, M., Chattopadhay, R. and Gupta, D. (2015) Effect of linear density of inlay yarns on the structural characteristics of knitted fabric tube and pressure generation on cylinder, Journal of the Textile Institute, 106(1), 39–46. doi:10.1080/00405000.2014.902166
  • 3. Berszakiewicz, A., Sieroń, A., Krasiński, Z., Cholewka, A. and Stanek, A. (2020) Compression therapy in venous diseases: current forms of compression materials and techniques, Advances in Dermatology and Allergology, 37(6), 836–841. doi:10.5114/ada.2019.86991
  • 4. BS 6612:1985 (1985) British Standard Specification for Graduated compression hosiery British Standards Institution.
  • 5. Certificat qualite-produits (1999) Referentiel technique prescrit pour les ortheses elastiques de contention des membres ASQUAL.
  • 6. Dubuis, L., Rohan, P.-Y., Avril, S., Badel, P. and Debayle, J. (2012) Patient-specific FE model of the leg under elastic compression 10th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Berlin, Germany.
  • 7. Duvall, J., Granberry, R., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2017) The design and development of active compression garments for orthostatic intolerance, 2017 Design of Medical Devices Conference, doi:10.1115/DMD2017-3480
  • 8. Felty, C. L. and Rooke, T. W. (2005) Compression therapy for chronic venous insufficiency, Seminars in Vascular Surgery, 18(1), 36–40. doi:10.1053/j.semvascsurg.2004.12.010
  • 9. Gaied, I., Drapier, S. and Lun, B. (2006) Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by medical compressive stockings, Journal of Biomechanics, 39(16), 3017–3025. doi:10.1016/j.jbiomech.2005.10.022
  • 10. Kırcı, F., Karamanlargil, E., Duru, S. C., Nergis, B. and Candan, C. (2021) Comfort properties of medical compression stockings from biodesigned and cotton fibers, Fibers and Polymers, 22(10), 2929– 2936. doi:10.1007/s12221-021-0615-8
  • 11. Kumar, B., Hu, J., Pan, N. and Narayana, H. (2016) A smart orthopedic compression device based on a polymeric stress memory actuator, Materials & Design, 97, 222–229. doi:10.1016/j.matdes.2016.02.092
  • 12. Leung, W. Y., Yuen, D. W., Ng, S. P. and Shi, S. Q. (2010) Pressure prediction model for compression garment design, Journal of Burn Care & Research, 31(5), 716–727. doi:10.1097/BCR.0b013e3181eebea0
  • 13. Liu, R., Guo, X., Lao, T. T. and Little, T. (2017) A critical review on compression textiles for compression therapy: textile-based compression interventions for chronic venous insufficiency, Textile Research Journal, 87(9), 1121–1141. doi:10.1177/0040517516646041
  • 14. Liu, R., Guo, X., Peng, Q., Zhang, L., Lao, T. T., Little, T., Liu, J. and Chan, E. (2018) Stratified body shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of lower extremities, Textile Research Journal, 88(18), 2055–2075. doi:10.1177/0040517517715094
  • 15. Liu, R., Lao, T. T. and Wang, S. (2013) Technical knitting and ergonomical design of 3d seamless compression hosiery and pressure performances in vivo and in vitro, Fibers and Polymers, 14(8), 1391–1399. doi:10.1007/s12221-013-1391-x
  • 16. Macintyre, L., Baird, M. and Weedall, P. (2004) The study of pressure delivery for hypertrophic scar treatment, International Journal of Clothing Science and Technology, 16(1/2), 173–183. doi:10.1108/09556220410520450
  • 17. Maleki, H., Aghajani, M., Sadeghi, A. H. and Jeddi, A. A. A. (2011) On the pressure behavior of tubular weft knitted fabrics constructed from textured polyester yarns, Journal of Engineered Fibers and Fabrics, 6(2), 30–39. doi:10.1177/155892501100600204
  • 18. Oğlakcıoğlu, N. and Marmaralı, A. (2010) Rejenere selüloz li̇fleri̇ni̇n kompresyon çoraplarının ısıl konfor özelli̇kleri̇ne etki̇si̇, Tekstil ve Mühendis, 17(77), 6–12.
  • 19. Partsch, H. (2006) Do we still need compression bandages? haemodynamic effects of compression stockings and bandages, Phlebology: The Journal of Venous Disease, 21(3), 132–138. doi:10.1258/026835506778253283
  • 20. Partsch, H., Partsch, B. and Braun, W. (2006) Interface pressure and stiffness of ready made compression stockings: comparison of in vivo and in vitro measurements, Journal of Vascular Surgery, 44(4), 809–814. doi:10.1016/j.jvs.2006.06.024
  • 21. Pettys-Baker, R., Schleif, N., Lee, J. W., Utset-Ward, S., Berglund, M. E., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2018) Tension-controlled active compression garment for treatment of orthostatic intolerance, 2018 Design of Medical Devices Conference, doi:10.1115/DMD2018-6884
  • 22. RAL-GZ 387:2000 (2008) RAL Deutsches Institut für Gütesicherung und Kennzeichnung, Medical Compression Hosiery Quality Assurance RAL-GZ 387/1.
  • 23. Sell, H., Vikatmaa, P., Albäck, A., Lepäntalo, M., Malmivaara, A., Mahmoud, O. and Venermo, M. (2014) Compression therapy versus surgery in the treatment of patients with varicose veins: a RCT, European Journal of Vascular and Endovascular Surgery, 47(6), 670–677. doi:10.1016/j.ejvs.2014.02.015
  • 24. Siddique, H. F., Mazari, A. A., Havelka, A. and Kus, Z. (2020) Performance characterization and pressure prediction of compression socks, Fibers and Polymers, 21(3), 657–670. doi:10.1007/s12221-020- 9420-z
  • 25. Siddique, H. F., Mazari, A. A., Havelka, A., Mansoor, T., Ali, A. and Azeem, M. (2018) Development of V-shaped compression socks on conventional socks knitting machine, AUTEX Research Journal, 18(4), 377–384. doi:10.1515/aut-2018-0014
  • 26. Stolk, R., Wegen van der-Franken, C. P. M. and Neumann, H. A. M. (2004) A method for measuring the dynamic behavior of medical compression hosiery during walking, Dermatologic Surgery, 30(5), 729–736. doi:10.1111/j.1524-4725.2004.30203.x
  • 27. Wang, Y. and Gu, L. (2022) Patient-specific medical compression stockings (MCSs) development based on mathematic model and non-contact 3D body scanning, The Journal of The Textile Institute, 1–10. doi:10.1080/00405000.2022.2111644

DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS

Year 2023, Volume: 28 Issue: 3, 741 - 760, 27.12.2023
https://doi.org/10.17482/uumfd.1268849

Abstract

Compression therapy is an important method for treating venous diseases such as venous edema and venous hypertension. Regular compression therapy's main objective is to diminish leg swelling by controlling blood flow and avoiding the recurrence of reversible blood flow. Compression socks are often recommended as therapeutic garments. In this study, a seamed compression sock was developed using fabric with an interlock knit structure. Three other sock samples were produced by using circular knitting MERZ CC4 model machine for comparison. The results demonstrate that the developed sock meets all the requirements of compression class I. Statistical analysis reveals that fabric parameters, particularly fabric weight, effectively explain compression pressure intensity according to the values of coefficient of determination, coefficient of correlation (r), and means sum of square errors (MSE). In this work, Laplace's Law and a few preexisting mathematical models were used to calculate the compression pressure of both standard compression socks and socks with seams, with results that were essentially similar. The points of data are tightly clustered around line of regression, showing that there is little variation in the compression pressure for socks with seams.

References

  • 1. Attaran, R. R. and Ochoa Chaar, C. I. (2017) Compression therapy for venous disease, Phlebology: The Journal of Venous Disease, 32(2), 81–88. doi:10.1177/0268355516633382
  • 2. Bera, M., Chattopadhay, R. and Gupta, D. (2015) Effect of linear density of inlay yarns on the structural characteristics of knitted fabric tube and pressure generation on cylinder, Journal of the Textile Institute, 106(1), 39–46. doi:10.1080/00405000.2014.902166
  • 3. Berszakiewicz, A., Sieroń, A., Krasiński, Z., Cholewka, A. and Stanek, A. (2020) Compression therapy in venous diseases: current forms of compression materials and techniques, Advances in Dermatology and Allergology, 37(6), 836–841. doi:10.5114/ada.2019.86991
  • 4. BS 6612:1985 (1985) British Standard Specification for Graduated compression hosiery British Standards Institution.
  • 5. Certificat qualite-produits (1999) Referentiel technique prescrit pour les ortheses elastiques de contention des membres ASQUAL.
  • 6. Dubuis, L., Rohan, P.-Y., Avril, S., Badel, P. and Debayle, J. (2012) Patient-specific FE model of the leg under elastic compression 10th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Berlin, Germany.
  • 7. Duvall, J., Granberry, R., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2017) The design and development of active compression garments for orthostatic intolerance, 2017 Design of Medical Devices Conference, doi:10.1115/DMD2017-3480
  • 8. Felty, C. L. and Rooke, T. W. (2005) Compression therapy for chronic venous insufficiency, Seminars in Vascular Surgery, 18(1), 36–40. doi:10.1053/j.semvascsurg.2004.12.010
  • 9. Gaied, I., Drapier, S. and Lun, B. (2006) Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by medical compressive stockings, Journal of Biomechanics, 39(16), 3017–3025. doi:10.1016/j.jbiomech.2005.10.022
  • 10. Kırcı, F., Karamanlargil, E., Duru, S. C., Nergis, B. and Candan, C. (2021) Comfort properties of medical compression stockings from biodesigned and cotton fibers, Fibers and Polymers, 22(10), 2929– 2936. doi:10.1007/s12221-021-0615-8
  • 11. Kumar, B., Hu, J., Pan, N. and Narayana, H. (2016) A smart orthopedic compression device based on a polymeric stress memory actuator, Materials & Design, 97, 222–229. doi:10.1016/j.matdes.2016.02.092
  • 12. Leung, W. Y., Yuen, D. W., Ng, S. P. and Shi, S. Q. (2010) Pressure prediction model for compression garment design, Journal of Burn Care & Research, 31(5), 716–727. doi:10.1097/BCR.0b013e3181eebea0
  • 13. Liu, R., Guo, X., Lao, T. T. and Little, T. (2017) A critical review on compression textiles for compression therapy: textile-based compression interventions for chronic venous insufficiency, Textile Research Journal, 87(9), 1121–1141. doi:10.1177/0040517516646041
  • 14. Liu, R., Guo, X., Peng, Q., Zhang, L., Lao, T. T., Little, T., Liu, J. and Chan, E. (2018) Stratified body shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of lower extremities, Textile Research Journal, 88(18), 2055–2075. doi:10.1177/0040517517715094
  • 15. Liu, R., Lao, T. T. and Wang, S. (2013) Technical knitting and ergonomical design of 3d seamless compression hosiery and pressure performances in vivo and in vitro, Fibers and Polymers, 14(8), 1391–1399. doi:10.1007/s12221-013-1391-x
  • 16. Macintyre, L., Baird, M. and Weedall, P. (2004) The study of pressure delivery for hypertrophic scar treatment, International Journal of Clothing Science and Technology, 16(1/2), 173–183. doi:10.1108/09556220410520450
  • 17. Maleki, H., Aghajani, M., Sadeghi, A. H. and Jeddi, A. A. A. (2011) On the pressure behavior of tubular weft knitted fabrics constructed from textured polyester yarns, Journal of Engineered Fibers and Fabrics, 6(2), 30–39. doi:10.1177/155892501100600204
  • 18. Oğlakcıoğlu, N. and Marmaralı, A. (2010) Rejenere selüloz li̇fleri̇ni̇n kompresyon çoraplarının ısıl konfor özelli̇kleri̇ne etki̇si̇, Tekstil ve Mühendis, 17(77), 6–12.
  • 19. Partsch, H. (2006) Do we still need compression bandages? haemodynamic effects of compression stockings and bandages, Phlebology: The Journal of Venous Disease, 21(3), 132–138. doi:10.1258/026835506778253283
  • 20. Partsch, H., Partsch, B. and Braun, W. (2006) Interface pressure and stiffness of ready made compression stockings: comparison of in vivo and in vitro measurements, Journal of Vascular Surgery, 44(4), 809–814. doi:10.1016/j.jvs.2006.06.024
  • 21. Pettys-Baker, R., Schleif, N., Lee, J. W., Utset-Ward, S., Berglund, M. E., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2018) Tension-controlled active compression garment for treatment of orthostatic intolerance, 2018 Design of Medical Devices Conference, doi:10.1115/DMD2018-6884
  • 22. RAL-GZ 387:2000 (2008) RAL Deutsches Institut für Gütesicherung und Kennzeichnung, Medical Compression Hosiery Quality Assurance RAL-GZ 387/1.
  • 23. Sell, H., Vikatmaa, P., Albäck, A., Lepäntalo, M., Malmivaara, A., Mahmoud, O. and Venermo, M. (2014) Compression therapy versus surgery in the treatment of patients with varicose veins: a RCT, European Journal of Vascular and Endovascular Surgery, 47(6), 670–677. doi:10.1016/j.ejvs.2014.02.015
  • 24. Siddique, H. F., Mazari, A. A., Havelka, A. and Kus, Z. (2020) Performance characterization and pressure prediction of compression socks, Fibers and Polymers, 21(3), 657–670. doi:10.1007/s12221-020- 9420-z
  • 25. Siddique, H. F., Mazari, A. A., Havelka, A., Mansoor, T., Ali, A. and Azeem, M. (2018) Development of V-shaped compression socks on conventional socks knitting machine, AUTEX Research Journal, 18(4), 377–384. doi:10.1515/aut-2018-0014
  • 26. Stolk, R., Wegen van der-Franken, C. P. M. and Neumann, H. A. M. (2004) A method for measuring the dynamic behavior of medical compression hosiery during walking, Dermatologic Surgery, 30(5), 729–736. doi:10.1111/j.1524-4725.2004.30203.x
  • 27. Wang, Y. and Gu, L. (2022) Patient-specific medical compression stockings (MCSs) development based on mathematic model and non-contact 3D body scanning, The Journal of The Textile Institute, 1–10. doi:10.1080/00405000.2022.2111644
There are 27 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Research Articles
Authors

Engin Akçagün 0000-0002-3668-7268

Hafiz Siddique 0000-0003-3251-8886

Abdurrrahim Yılmaz 0000-0002-9877-8990

Early Pub Date December 2, 2023
Publication Date December 27, 2023
Submission Date March 21, 2023
Acceptance Date September 18, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Akçagün, E., Siddique, H., & Yılmaz, A. (2023). DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 741-760. https://doi.org/10.17482/uumfd.1268849
AMA Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. December 2023;28(3):741-760. doi:10.17482/uumfd.1268849
Chicago Akçagün, Engin, Hafiz Siddique, and Abdurrrahim Yılmaz. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 3 (December 2023): 741-60. https://doi.org/10.17482/uumfd.1268849.
EndNote Akçagün E, Siddique H, Yılmaz A (December 1, 2023) DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 741–760.
IEEE E. Akçagün, H. Siddique, and A. Yılmaz, “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”, UUJFE, vol. 28, no. 3, pp. 741–760, 2023, doi: 10.17482/uumfd.1268849.
ISNAD Akçagün, Engin et al. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (December 2023), 741-760. https://doi.org/10.17482/uumfd.1268849.
JAMA Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. 2023;28:741–760.
MLA Akçagün, Engin et al. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 3, 2023, pp. 741-60, doi:10.17482/uumfd.1268849.
Vancouver Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. 2023;28(3):741-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.