Research Article
BibTex RIS Cite

Failure Mode and Effects Analysis with Fuzzy TOPSIS in Fabric Dyeing Process

Year 2023, Volume: 28 Issue: 3, 915 - 926, 27.12.2023
https://doi.org/10.17482/uumfd.1383914

Abstract

A number of physical and chemical operations are applied in fabric dyeing. Failure to correctly adjust material recipes and parameters such as temperature, rotation speed, and pH, which must be determined according to product features, causes errors. Even though some of these errors can be eliminated by rework, they increase operational costs. In this study, Failure Mode and Effects Analysis (FMEA) with fuzzy TOPSIS is applied to determine the failure types in the dyeing processes of a company operating in the textile sector in Bursa to evaluate and prioritize their risks. Fuzzy logic enables evaluating errors using linguistic variables, while TOPSIS gives different weights to severity, probability, and detectability criteria. As a result of the study, preventive actions that can reduce these errors are evaluated.

References

  • 1. Bahadır Ünal, Z. ve Acar, E. (2016) Failure mode and effect analysis: An application in jeans production process, Tekstil, 65(1-2), 3-34.
  • 2. Bilişik, M.T. (2018) Failure mode and effect analysis and implementation in a textile factory, Yönetim ve Ekonomi Araştırmaları Dergisi, 16(2), 162-178. doi: 10.11611/yead.398967
  • 3. Bocut, M.S. ve Uncu, N. (2022) FMEA based fuzzy Topsis for assessment of quality problems in telescopic platform production, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 875-884.
  • 4. Bowles, J.B. ve Pelaez, C.E. (1995) Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis, Reliability Engineering and System Safety, 50(2), 203-213.
  • 5. Buruk Şahin, Y. ve Aktar Demirtaş, E. (2021) DSS-Based proces control and FMEA studies for different processes in the field of textile, Tekstil ve Konfeksiyon, 31(4), 250-263. doi: 10.32710/tekstilvekonfeksiyon.917671
  • 6. Chen, C.T. (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1-9.
  • 7. Cardiel-Ortega, J.J. ve Baeza-Serrato, R. (2023) Failure mode and effect analysis with a fuzzy logic approach, Systems, 11, 348. doi: 10.3390/systems11070348
  • 8. Dağsuyu, C., Göçmen, E., Narlı, M. ve Kokangül, A. (2016) Classical and fuzzy FMEA risk analysis in a sterilization unit, Computers & Industrial Engineering, 101, 286-294. doi: 10.1016/j.cie.2016.09.015
  • 9. Dedimas, T. ve Gebeyehu, S.G. (2019) Application of failure mode effect analysis (FMEA) for efficient and cost-effective manufacturing: a case study at Bahir Dar textile share company, Ethiopia, Journal of Optimization in Industrial Engineering, 12(1), 23-29. doi: 10.22094/joie.2018.556677.1533
  • 10. Dhiman, H.S. ve Deb, D. (2020) Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wing farms, Energy, 202, 117755. doi: 10.1016/j.energy.2020.117755
  • 11. Erdil, A. ve Taçgın, E. (2018) Potential Risks and Their Analysis of the Apparel & Textile Industry in Turkey: A Quality-Oriented Sustainability Approach, Fibres & Textiles in Eastern Europe, 26, 6(32), 30-42. doi: 0.5604/01.3001.0012.2526
  • 12. Eren, E.R. ve Pamuk, O. (2020) Hata türü ve etkileri analizi yönteminin konfeksiyon sektöründe uygulanması, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1533-1546. doi: 10.17482/uumfd.732515
  • 13. Gul, M., Yucesan, M ve Celik E. (2020) A manufacturing failure mode and effect analysis based on fuzzy and probabilistic risk analysis, Applied Soft Computing, 96, 106689. doi: 10.1016/j.asoc.2020.106689
  • 14. Gul, M. ve Ak, M.F. (2021) A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: case study in a marble manufacturing facility, Soft Computing, 25, 6157-6178. doi: 10.1007/s00500-021-05605-8
  • 15. Hashim, M., Nazam, M., Baig, S.A., Basit, A., Usman, M., Hussain, Z. ve Akash, R.S.I. (2023) Achieving textile supply chain reliability through risk mitigation: a stakeholders perspective, The Journal of The Textile Institute. doi: 10.1080/00405000.2023.2201033
  • 16. Korkusuz Polat, T. (2019) Risk priority with fuzzy logic: application of a textile factory, Sakarya University Journal of Science, 23(2), 203-212. doi: 10.16984/saufenbilder.458807
  • 17. Küçük, M., İşler, M. ve Güner, M. (2016) An application of the FMEA method to the cutting department of a clothing company, Tekstil ve Konfeksiyon, 26(2), 205-212.
  • 18. Liu, H.C., You, J.X., Shan M.M. ve Shao, L.N. (2015) Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach, Soft Computing, 19, 1085-1098. doi: 10.1007/s00500-014-1321-x
  • 19. Liu, H.C., Chen, X.Q., Duan C.Y. ve Wang, Y.M. (2019) Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review, Computers & Industrial Engineering, 135, 881-897. doi: 10.1016/j.cie.2019.06.055
  • 20. Mutlu, N.G. ve Altuntaş, S. (2019), Hazard and risk analysis for ring spinning yarn production process by integrated FTA-FMEA approach, Tekstil ve Konfeksiyon, 29(3), 208-218. doi: 10.32710/tekstilvekonfeksiyon.482167
  • 21. Özyazgan, V. (2014) FMEA analysis and implementation in a textile factory producing woven fabric, Tekstil ve Konfeksiyon, 24(3), 303-308.
  • 22. Özyazgan, V. ve Engin, F.Z. (2013) FMEA analysis and applications in knitting industry, Tekstil ve Konfeksiyon, 23(3), 328-232.
  • 23. Pazireh, E., Sadeghi, A.H. ve Shokohyar, S. (2017) Analyzing the enhancement of production efficiency using FMEA through simulation-based optimization technique: A case study in apparel manufacturing, Cogent Engineering, 4, 1284373. doi: 10.1080/23311916.2017.1284373.
  • 24. Salih, M.M., Zaidan, B.B., Zaidan, A.A. ve Ahmed, M. A. (2019) Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017, Computers and Operations Research, 104, 207-227. doi: 10.1016/j.cor.2018.12.019
  • 25. Sharifi, F., Vahdatzad, M.A., Barghi, B. ve Azadeh-Fard, N. (2022) Identifying risks using combined FMEA-TOPSIS method for new product development in the dairy industry and offering mitigation strategies: case study of Ramak Company, International Journal of Assurance Engineering and Management, 13(5), 2790-2807. doi: 10.1007/s13198-022-01672-8
  • 26. Sofyalıoğlu, Ç. (2011) Süreç hata modu etki analizini gri değerlendirme modeli, Ege Akademik Bakış, 11(1), 155-164.
  • 27. Song, W. Ming, X, Wu, Z. ve Zhu, B. (2013) Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS, International Journal of Computer Integrated Manufacturing, 26(12), 1172-1186. doi: 10.1080/0951192X.2013.785027
  • 28. Tekez, E.K. (2018) Failure modes and effects analysis using fuzzy TOPSIS in knitting process, Tekstil ve Konfeksiyon, 28(1), 21-26.
  • 29. Testik, O.M. ve Unlu E.T. (2023) Fuzzy FMEA in risk assessment for test and calibration laboratories, Quality and Reliable Engineering International, 39, 575-589. doi: 10.1002/qre.3198
  • 30. Vahdani, B., Salimi, M. ve Charkchian, M. (2015) A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process, International Journal of Advanced Manufacturing Technology, 77, 357-368. doi: 10.1007/s00170-014-6466-3
  • 31. Yazıcı, K., Gökler, S.H. ve Boran S. (2021) An integrated SMED-fuzzy FMEA model for reducing setup time, Journal of Intelligent Manufacturing, 32, 1547-1561. doi: 10.1007/s10845-020-01675-x
  • 32. Yontar, E. ve Zengin, Ş. (2023) Identifying and analyzing the risk factors of sustainable supply chain management in textile sector, İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(1), 7-20. doi: 10.20854/bujse.1211206
  • 33. Yucesan, M. ve Gul, M. (2021) Failure modes and effects analysis based on neutrosophic analytic hierarcy process: method and application, Soft Computing, 25, 11035-11052. doi: 10.1007/s00500-021-05840-z
  • 34. Wu, Z., Liu, W. ve Nie W. (2021) Literature review and prospect of the development and application of FMEA in manufacturing industry, The International Journal of Advanced Manufacturing Technology, 112, 1409-1436. doi: 10.1007/s00170-020-06425-0

KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ

Year 2023, Volume: 28 Issue: 3, 915 - 926, 27.12.2023
https://doi.org/10.17482/uumfd.1383914

Abstract

Kumaş boyama sürecinde çok sayıda fiziksel ve kimyasal işlem uygulanmaktadır. Ürün özelliklerine göre belirlenmesi gereken malzeme reçetelerinin ve sıcaklık, devir hızı, pH gibi parametrelerin doğru ayarlanmaması hatalara sebep olmaktadır. Bu hataların bir kısmı yeniden işleme ile giderilebilse bile operasyonel maliyetleri arttırmaktadır. Bu çalışmada, Bursa’da tekstil sektöründe faaliyet gösteren bir işletmenin boyama süreçlerinde karşılaşılan hataları belirlemek, risklerini değerlendirmek ve önceliklendirmek amacıyla bulanık TOPSIS ile Hata Türü ve Etkileri Analizi (HTEA) uygulanmaktadır. Bulanık mantık, hataların dilsel değişkenler kullanılarak değerlendirilmesini; TOPSIS ise şiddet, olasılık ve saptanabilirlik kriterlerine farklı ağırlıklar verilmesini mümkün kılmaktadır. Çalışma sonucunda hataları azaltabilecek önleyici tedbirler değerlendirilmektedir.

References

  • 1. Bahadır Ünal, Z. ve Acar, E. (2016) Failure mode and effect analysis: An application in jeans production process, Tekstil, 65(1-2), 3-34.
  • 2. Bilişik, M.T. (2018) Failure mode and effect analysis and implementation in a textile factory, Yönetim ve Ekonomi Araştırmaları Dergisi, 16(2), 162-178. doi: 10.11611/yead.398967
  • 3. Bocut, M.S. ve Uncu, N. (2022) FMEA based fuzzy Topsis for assessment of quality problems in telescopic platform production, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 875-884.
  • 4. Bowles, J.B. ve Pelaez, C.E. (1995) Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis, Reliability Engineering and System Safety, 50(2), 203-213.
  • 5. Buruk Şahin, Y. ve Aktar Demirtaş, E. (2021) DSS-Based proces control and FMEA studies for different processes in the field of textile, Tekstil ve Konfeksiyon, 31(4), 250-263. doi: 10.32710/tekstilvekonfeksiyon.917671
  • 6. Chen, C.T. (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1-9.
  • 7. Cardiel-Ortega, J.J. ve Baeza-Serrato, R. (2023) Failure mode and effect analysis with a fuzzy logic approach, Systems, 11, 348. doi: 10.3390/systems11070348
  • 8. Dağsuyu, C., Göçmen, E., Narlı, M. ve Kokangül, A. (2016) Classical and fuzzy FMEA risk analysis in a sterilization unit, Computers & Industrial Engineering, 101, 286-294. doi: 10.1016/j.cie.2016.09.015
  • 9. Dedimas, T. ve Gebeyehu, S.G. (2019) Application of failure mode effect analysis (FMEA) for efficient and cost-effective manufacturing: a case study at Bahir Dar textile share company, Ethiopia, Journal of Optimization in Industrial Engineering, 12(1), 23-29. doi: 10.22094/joie.2018.556677.1533
  • 10. Dhiman, H.S. ve Deb, D. (2020) Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wing farms, Energy, 202, 117755. doi: 10.1016/j.energy.2020.117755
  • 11. Erdil, A. ve Taçgın, E. (2018) Potential Risks and Their Analysis of the Apparel & Textile Industry in Turkey: A Quality-Oriented Sustainability Approach, Fibres & Textiles in Eastern Europe, 26, 6(32), 30-42. doi: 0.5604/01.3001.0012.2526
  • 12. Eren, E.R. ve Pamuk, O. (2020) Hata türü ve etkileri analizi yönteminin konfeksiyon sektöründe uygulanması, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1533-1546. doi: 10.17482/uumfd.732515
  • 13. Gul, M., Yucesan, M ve Celik E. (2020) A manufacturing failure mode and effect analysis based on fuzzy and probabilistic risk analysis, Applied Soft Computing, 96, 106689. doi: 10.1016/j.asoc.2020.106689
  • 14. Gul, M. ve Ak, M.F. (2021) A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: case study in a marble manufacturing facility, Soft Computing, 25, 6157-6178. doi: 10.1007/s00500-021-05605-8
  • 15. Hashim, M., Nazam, M., Baig, S.A., Basit, A., Usman, M., Hussain, Z. ve Akash, R.S.I. (2023) Achieving textile supply chain reliability through risk mitigation: a stakeholders perspective, The Journal of The Textile Institute. doi: 10.1080/00405000.2023.2201033
  • 16. Korkusuz Polat, T. (2019) Risk priority with fuzzy logic: application of a textile factory, Sakarya University Journal of Science, 23(2), 203-212. doi: 10.16984/saufenbilder.458807
  • 17. Küçük, M., İşler, M. ve Güner, M. (2016) An application of the FMEA method to the cutting department of a clothing company, Tekstil ve Konfeksiyon, 26(2), 205-212.
  • 18. Liu, H.C., You, J.X., Shan M.M. ve Shao, L.N. (2015) Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach, Soft Computing, 19, 1085-1098. doi: 10.1007/s00500-014-1321-x
  • 19. Liu, H.C., Chen, X.Q., Duan C.Y. ve Wang, Y.M. (2019) Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review, Computers & Industrial Engineering, 135, 881-897. doi: 10.1016/j.cie.2019.06.055
  • 20. Mutlu, N.G. ve Altuntaş, S. (2019), Hazard and risk analysis for ring spinning yarn production process by integrated FTA-FMEA approach, Tekstil ve Konfeksiyon, 29(3), 208-218. doi: 10.32710/tekstilvekonfeksiyon.482167
  • 21. Özyazgan, V. (2014) FMEA analysis and implementation in a textile factory producing woven fabric, Tekstil ve Konfeksiyon, 24(3), 303-308.
  • 22. Özyazgan, V. ve Engin, F.Z. (2013) FMEA analysis and applications in knitting industry, Tekstil ve Konfeksiyon, 23(3), 328-232.
  • 23. Pazireh, E., Sadeghi, A.H. ve Shokohyar, S. (2017) Analyzing the enhancement of production efficiency using FMEA through simulation-based optimization technique: A case study in apparel manufacturing, Cogent Engineering, 4, 1284373. doi: 10.1080/23311916.2017.1284373.
  • 24. Salih, M.M., Zaidan, B.B., Zaidan, A.A. ve Ahmed, M. A. (2019) Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017, Computers and Operations Research, 104, 207-227. doi: 10.1016/j.cor.2018.12.019
  • 25. Sharifi, F., Vahdatzad, M.A., Barghi, B. ve Azadeh-Fard, N. (2022) Identifying risks using combined FMEA-TOPSIS method for new product development in the dairy industry and offering mitigation strategies: case study of Ramak Company, International Journal of Assurance Engineering and Management, 13(5), 2790-2807. doi: 10.1007/s13198-022-01672-8
  • 26. Sofyalıoğlu, Ç. (2011) Süreç hata modu etki analizini gri değerlendirme modeli, Ege Akademik Bakış, 11(1), 155-164.
  • 27. Song, W. Ming, X, Wu, Z. ve Zhu, B. (2013) Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS, International Journal of Computer Integrated Manufacturing, 26(12), 1172-1186. doi: 10.1080/0951192X.2013.785027
  • 28. Tekez, E.K. (2018) Failure modes and effects analysis using fuzzy TOPSIS in knitting process, Tekstil ve Konfeksiyon, 28(1), 21-26.
  • 29. Testik, O.M. ve Unlu E.T. (2023) Fuzzy FMEA in risk assessment for test and calibration laboratories, Quality and Reliable Engineering International, 39, 575-589. doi: 10.1002/qre.3198
  • 30. Vahdani, B., Salimi, M. ve Charkchian, M. (2015) A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process, International Journal of Advanced Manufacturing Technology, 77, 357-368. doi: 10.1007/s00170-014-6466-3
  • 31. Yazıcı, K., Gökler, S.H. ve Boran S. (2021) An integrated SMED-fuzzy FMEA model for reducing setup time, Journal of Intelligent Manufacturing, 32, 1547-1561. doi: 10.1007/s10845-020-01675-x
  • 32. Yontar, E. ve Zengin, Ş. (2023) Identifying and analyzing the risk factors of sustainable supply chain management in textile sector, İstanbul Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(1), 7-20. doi: 10.20854/bujse.1211206
  • 33. Yucesan, M. ve Gul, M. (2021) Failure modes and effects analysis based on neutrosophic analytic hierarcy process: method and application, Soft Computing, 25, 11035-11052. doi: 10.1007/s00500-021-05840-z
  • 34. Wu, Z., Liu, W. ve Nie W. (2021) Literature review and prospect of the development and application of FMEA in manufacturing industry, The International Journal of Advanced Manufacturing Technology, 112, 1409-1436. doi: 10.1007/s00170-020-06425-0
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Emine Eş Yürek 0000-0002-0871-3385

Early Pub Date December 25, 2023
Publication Date December 27, 2023
Submission Date October 31, 2023
Acceptance Date November 27, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Eş Yürek, E. (2023). KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 915-926. https://doi.org/10.17482/uumfd.1383914
AMA Eş Yürek E. KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ. UUJFE. December 2023;28(3):915-926. doi:10.17482/uumfd.1383914
Chicago Eş Yürek, Emine. “KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 3 (December 2023): 915-26. https://doi.org/10.17482/uumfd.1383914.
EndNote Eş Yürek E (December 1, 2023) KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 915–926.
IEEE E. Eş Yürek, “KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ”, UUJFE, vol. 28, no. 3, pp. 915–926, 2023, doi: 10.17482/uumfd.1383914.
ISNAD Eş Yürek, Emine. “KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (December 2023), 915-926. https://doi.org/10.17482/uumfd.1383914.
JAMA Eş Yürek E. KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ. UUJFE. 2023;28:915–926.
MLA Eş Yürek, Emine. “KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 3, 2023, pp. 915-26, doi:10.17482/uumfd.1383914.
Vancouver Eş Yürek E. KUMAŞ BOYAMA SÜRECİNDE BULANIK TOPSIS İLE HATA TÜRÜ VE ETKİLERİ ANALİZİ. UUJFE. 2023;28(3):915-26.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.