THE EFFECT OF ESSENTIAL OIL ON FIBER MORPHOLOGY AND SURFACE PROPERTIES IN COAXIAL NANOFIBERS
Year 2024,
Volume: 29 Issue: 1, 125 - 138, 22.04.2024
Nursema Pala Avcı
,
Nebahat Aral Yılmaz
,
Fatma Banu Nergis
Abstract
In this study, core-shell nanofibers were produced by using hydrophilic polyvinylpyrrolidone (PVP) polymer in the core and hydrophobic poly(e-caprolactone) (PCL) polymer in the shell. Essential oil added nanofiber structures were developed by adding thyme oil (TEO) and borage oil (BO) in the PVP core part by using Triton X 100 (TX-100) as the surfactant. 8% PVP-8% PCL nanofibers were produced by adding TEO, BO and a 1:1 volume/volume mixture of these two (TEO:BO) to the PVP solution. Addition of essential oil and surfactant to the solutions resulted in different conductivity and viscosity values. SEM images were analyzed and it was observed that nanofiber diameters increased when essential oil and surfactant were added to the core of the coaxial nanofibers. Pristine, TEO added, TEO:BO added and BOadded nanofibers were calculated as 145 ± 66, 233 ± 150, 245 ± 165 and 300 ± 124 nm, respectively. Besides, water contact angle measurements showed that TX-100 and essential oil additives caused high hydrophilization of nanofiber by changing the hydrophobic nature of PCL. While the contact angle of the 8% PVP-8% PCL sample without additives were 98°, the contact angle of the oil and surfactant containing samples were measured as 0°. In conclusion, it was observed that the nanofiber morphology and surface properties changed when different essential oils and surfactant were added to the core-shell nanofibers.
Supporting Institution
Istanbul Technical University
Project Number
MYL-2021-4327
Thanks
The authors gratefully acknowledge the funding by ITU-Graduate Thesis Program under the grant number MYL-2021-4327.
References
- 1. Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 117, 304-336. doi: 10.1016/j.eurpolymj.2019.05.020
- 2. Angammana, C. J., & Jayaram, S. H. (2011). Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on industry applications, 47(3), 1109-
1117. doi: 10.1109/TIA.2011.2127431
- 3. Ansarifar, E., & Moradinezhad, F. (2021). Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. International Journal of
Food Science & Technology, 56(9), 4239-4247. doi: 10.1111/ijfs.15130
- 4. Aras, C., Gebizli, Ş. D., Özer, E. T., & Karaca, E. (2019). Investigation of the effects of some process parameters on the morphological properties of polyurethane nanofibrous mats containing black
seed oil. Uludağ University Journal of The Faculty of Engineering, Vol. 24, No. 2. doi: 10.17482/uumfd.560358
- 5. Aykut, Y., Pourdeyhimi, B., & Khan, S. A. (2013). Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs. Journal of Applied Polymer
Science, 130(5), 3726-3735. doi: 10.1002/app.39637
- 6. Burt, S. A., Vlielander, R., Haagsman, H. P., & Veldhuizen, E. J. (2005). Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food
stabilizers. Journal of food protection, 68(5), 919-926. doi: 10.4315/0362-028X-68.5.919
- 7. Chen, F., Xu, L., Tian, Y., Caratenuto, A., Liu, X., & Zheng, Y. (2021). Electrospun polycaprolactone nanofiber composites with embedded carbon nanotubes/nanoparticles for photothermal
absorption. ACS Applied Nano Materials, 4(5), 5230-5239. doi: 10.1021/acsanm.1c00623
- 8. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., ... & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 111490. doi:
10.1016/j.eurpolymj.2022.111490
- 9. Çallıoğlu, F. C., Güler, H. K., & Çetin, E. S. (2019). Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil. Materials Research Express, 6(12),
125013. doi: 10.1088/2053-1591/ab5387
- 10. Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2017). Alternative solvent systems for polycaprolactone nanowebs via electrospinning. Journal of industrial textiles, 47(1), 57-70. doi: 10.1177/15280837166340
- 11. Gelmetti, C. (2009). Therapeutic moisturizers as adjuvant therapy for psoriasis patients. American Journal of Clinical Dermatology, 10(Suppl 1), 7-12. doi: 10.2165/0128071-200910001-00002
- 12. Huang, Z. M., Zhang, Y., & Ramakrishna, S. (2005). Double‐layered composite nanofibers and their mechanical performance. Journal of Polymer Science Part B: Polymer Physics, 43(20), 2852-2861.
doi: 10.1002/polb.20572
- 13. Jain, R., Shetty, S., & Yadav, K. S. (2020). Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. Journal of Drug Delivery Science and Technology, 57, 101604. doi:
10.1016/j.jddst.2020.101604
- 14. Kang, S. Y., Um, J. Y., Chung, B. Y., Lee, S. Y., Park, J. S., Kim, J. C., ... & Kim, H. O. (2022). Moisturizer in patients with inflammatory skin diseases. Medicina, 58(7), 888. doi: 10.3390/medicina58070888
- 15. Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M. (2018). Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties. Journal of industrial textiles, 47(5), 834-852. doi: 10.1177/1528083716674
- 16. Krysiak, Z. J., Kaniuk, Ł., Metwally, S., Szewczyk, P. K., Sroczyk, E. A., Peer, P., ... & Stachewicz, U. (2020). Nano-and microfiber PVB patches as natural oil carriers for atopic skin treatment. ACS Applied
Bio Materials, 3(11), 7666-7676. doi: 10.1021/acsabm.0c00854
- 17. Krysiak, Z. J., Knapczyk-Korczak, J., Maniak, G., & Stachewicz, U. (2021). Moisturizing effect of skin patches with hydrophobic and hydrophilic electrospun fibers for atopic dermatitis. Colloids and
Surfaces B: Biointerfaces, 199, 111554. doi: 10.1016/j.colsurfb.2020.111554
- 18. Kwon, S., Yang, H., & Lee, S. (2023). Core–shell nanofibers as carrier systems for sustained delivery of tea tree oil. Textile Research Journal, 93(21-22), 4742-4754. doi: 10.1177/00405175231180
- 19. Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P. P., ... & Mele, E. (2015). Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials
Chemistry B, 3(8), 1583-1589. doi: 10.1039/C4TB01974A
- 20. Liao, N., Unnithan, A. R., Joshi, M. K., Tiwari, A. P., Hong, S. T., Park, C. H., & Kim, C. S. (2015). Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for
wound dressing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 194-201. doi: 10.1016/j.colsurfa.2015.01.022
- 21. Lin, L., Zhu, Y., & Cui, H. (2018). Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. Lwt, 97, 711-718. doi: 10.1016/j.lwt.2018.08.015
- 22. Maroufi, L. Y., Ghorbani, M., Mohammadi, M., & Pezeshki, A. (2021). Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of
guar gum and thyme essential oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 126659. doi: 10.1016/j.colsurfa.2021.126659
- 23. Miguel, S. P., Sequeira, R. S., Moreira, A. F., Cabral, C. S., Mendonça, A. G., Ferreira, P., & Correia, I. J. (2019). An overview of electrospun membranes loaded with bioactive molecules for improving the
wound healing process. European Journal of Pharmaceutics and Biopharmaceutics, 139, 1-22. doi: 10.1016/j.ejpb.2019.03.010
- 24. Morais, M. S., Bonfim, D. P., Aguiar, M. L., & Oliveira, W. P. (2023). Electrospun poly (vinyl alcohol) nanofibrous mat loaded with green propolis extract, chitosan and nystatin as an innovative wound
dressing material. Journal of Pharmaceutical Innovation, 18(2), 704-718. doi: 10.1007/s12247-022-09681-7
- 25. Nasari, M., Semnani, D., Hadjianfar, M., & Amanpour, S. (2020). Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-
fluorouracil: An anticancer drug delivery system. Journal of Materials Science, 55(23), 10185-10201. doi: 10.1007/s10853-020-04784-3
- 26. Sabra, S., Ragab, D. M., Agwa, M. M., & Rohani, S. (2020). Recent advances in electrospun nanofibers for some biomedical applications. European Journal of Pharmaceutical Sciences, 144, 105224.
doi: 10.1016/j.ejps.2020.105224
- 27. Sruthi, R., Balagangadharan, K., & Selvamurugan, N. (2020). Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone
regeneration. Colloids and Surfaces B: Biointerfaces, 193, 111110. doi: 10.1016/j.colsurfb.2020.111110
- 28. Stoleru, E., & Brebu, M. (2021). Stabilization techniques of essential oils by incorporation into biodegradable polymeric materials for food packaging. Molecules, 26(20), 6307. doi:
10.3390/molecules26206307
- 29. Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R. (2011). Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings.
Journal of Applied Polymer Science, 121(5), 2893-2899. doi: 10.1002/app.33915
- 30. Sun, B., Duan, B., & Yuan, X. (2006). Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 102(1), 39-45. doi: 10.1002/app.24297
- 31. Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H., Detsch, R., & Boccaccini, A. R. (2019). Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove
essential oil for antibacterial wound dressing. Pharmaceutics, 11(11), 570. doi: 10.3390/pharmaceutics11110570
- 32. Varsei, M., Tanha, N. R., Gorji, M., & Mazinani, S. (2021). Fabrication and optimization of PCL/PVP nanofibers with Lawsonia inermis for antibacterial wound dressings. Polymers and Polymer
Composites, 29(9_suppl), S1403-S1413. doi: 10.1177/0967391121105330
- 33. Zhang, C., Feng, F., & Zhang, H. (2018). Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science & Technology, 80, 175-186. doi: 10.1016/j.tifs.2018.08.005
- 34. Zhang, Y., Zhang, Y., Zhu, Z., Jiao, X., Shang, Y., & Wen, Y. (2019). Encapsulation of thymol in biodegradable nanofiber via coaxial eletrospinning and applications in fruit preservation. Journal of
agricultural and food chemistry, 67(6), 1736-1741. doi: 10.1021/acs.jafc.8b06362
- 35. Zhu, L. F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., & Chang, M. W. (2019). A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of
Pharmaceutical Sciences, 137, 105002. doi: 10.1016/j.ejps.2019.105002
Koaksiyel Nanoliflerde Esansiyel Yağların Lif Morfolojisi ve Yüzey Özellikleri Üzerindeki Etkisi
Year 2024,
Volume: 29 Issue: 1, 125 - 138, 22.04.2024
Nursema Pala Avcı
,
Nebahat Aral Yılmaz
,
Fatma Banu Nergis
Abstract
Bu çalışmada, çekirdekte hidrofilik polivinilpirolidon (PVP) polimeri ve kabukta hidrofobik poli(ekaprolakton) (PCL) polimeri kullanılarak çekirdek-kabuk nanolifler üretilmiştir. Yüzey aktif madde olarak Triton (TX-100) kullanmak suretiyle PVP çekirdek kısmına kekik yağı (TEO) ve hodan yağı (BO) eklenerek esansiyel yağ katkılı nanolifli yapılar geliştirilmiştir. PVP çözeltisine TEO, BO ve bu ikisinin (TEO:BO) 1:1 hacim/hacim karışımı eklenerek %8 PVP-%8 PCL nanolifler üretilmiştir. Çözeltilere esansiyel yağ ve yüzey aktif maddenin eklenmesi, farklı iletkenlik ve viskozite değerleri ile sonuçlanmıştır. SEM görüntüleri analiz edilmiş ve koaksiyel nanoliflerin çekirdeğine esansiyel yağ ve yüzey aktif madde eklendiğinde nanolif çaplarının arttığı gözlenmiştir. Katkısız ve TEO, TEO:BO ile BO katkılı nanoliflerin çapları sırasıyla 145 ± 66, 233 ± 150, 245 ± 165 and 300 ± 124 nm olacak şekilde ölçülmüştür. Ayrıca su temas açısı ölçümleri, TX-100 ve esansiyel yağ katkı maddelerinin PCL'nin hidrofobik yapısını değiştirerek nanoliflerin yüksek oranda hidrofilizasyonuna neden olduğunu göstermiştir. Katkısız %8 PVP-%8 PCL nanoliflerin temas açıları 98° iken, yüzey aktif madde ve yağ içerikli numunelerin temas açılarının 0° olduğu tespit edilmiştir. Sonuç olarak, çekirdek-kabuk yapısındaki nanoliflere farklı yağlar ve yüzey aktif maddeler eklendiğinde nanolif morfolojisinin ve yüzey özelliklerinin değiştiği gözlemlenmiştir.
Supporting Institution
İstanbul Teknik Üniversitesi
Project Number
MYL-2021-4327
References
- 1. Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 117, 304-336. doi: 10.1016/j.eurpolymj.2019.05.020
- 2. Angammana, C. J., & Jayaram, S. H. (2011). Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on industry applications, 47(3), 1109-
1117. doi: 10.1109/TIA.2011.2127431
- 3. Ansarifar, E., & Moradinezhad, F. (2021). Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. International Journal of
Food Science & Technology, 56(9), 4239-4247. doi: 10.1111/ijfs.15130
- 4. Aras, C., Gebizli, Ş. D., Özer, E. T., & Karaca, E. (2019). Investigation of the effects of some process parameters on the morphological properties of polyurethane nanofibrous mats containing black
seed oil. Uludağ University Journal of The Faculty of Engineering, Vol. 24, No. 2. doi: 10.17482/uumfd.560358
- 5. Aykut, Y., Pourdeyhimi, B., & Khan, S. A. (2013). Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs. Journal of Applied Polymer
Science, 130(5), 3726-3735. doi: 10.1002/app.39637
- 6. Burt, S. A., Vlielander, R., Haagsman, H. P., & Veldhuizen, E. J. (2005). Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food
stabilizers. Journal of food protection, 68(5), 919-926. doi: 10.4315/0362-028X-68.5.919
- 7. Chen, F., Xu, L., Tian, Y., Caratenuto, A., Liu, X., & Zheng, Y. (2021). Electrospun polycaprolactone nanofiber composites with embedded carbon nanotubes/nanoparticles for photothermal
absorption. ACS Applied Nano Materials, 4(5), 5230-5239. doi: 10.1021/acsanm.1c00623
- 8. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., ... & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 111490. doi:
10.1016/j.eurpolymj.2022.111490
- 9. Çallıoğlu, F. C., Güler, H. K., & Çetin, E. S. (2019). Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil. Materials Research Express, 6(12),
125013. doi: 10.1088/2053-1591/ab5387
- 10. Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2017). Alternative solvent systems for polycaprolactone nanowebs via electrospinning. Journal of industrial textiles, 47(1), 57-70. doi: 10.1177/15280837166340
- 11. Gelmetti, C. (2009). Therapeutic moisturizers as adjuvant therapy for psoriasis patients. American Journal of Clinical Dermatology, 10(Suppl 1), 7-12. doi: 10.2165/0128071-200910001-00002
- 12. Huang, Z. M., Zhang, Y., & Ramakrishna, S. (2005). Double‐layered composite nanofibers and their mechanical performance. Journal of Polymer Science Part B: Polymer Physics, 43(20), 2852-2861.
doi: 10.1002/polb.20572
- 13. Jain, R., Shetty, S., & Yadav, K. S. (2020). Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. Journal of Drug Delivery Science and Technology, 57, 101604. doi:
10.1016/j.jddst.2020.101604
- 14. Kang, S. Y., Um, J. Y., Chung, B. Y., Lee, S. Y., Park, J. S., Kim, J. C., ... & Kim, H. O. (2022). Moisturizer in patients with inflammatory skin diseases. Medicina, 58(7), 888. doi: 10.3390/medicina58070888
- 15. Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M. (2018). Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties. Journal of industrial textiles, 47(5), 834-852. doi: 10.1177/1528083716674
- 16. Krysiak, Z. J., Kaniuk, Ł., Metwally, S., Szewczyk, P. K., Sroczyk, E. A., Peer, P., ... & Stachewicz, U. (2020). Nano-and microfiber PVB patches as natural oil carriers for atopic skin treatment. ACS Applied
Bio Materials, 3(11), 7666-7676. doi: 10.1021/acsabm.0c00854
- 17. Krysiak, Z. J., Knapczyk-Korczak, J., Maniak, G., & Stachewicz, U. (2021). Moisturizing effect of skin patches with hydrophobic and hydrophilic electrospun fibers for atopic dermatitis. Colloids and
Surfaces B: Biointerfaces, 199, 111554. doi: 10.1016/j.colsurfb.2020.111554
- 18. Kwon, S., Yang, H., & Lee, S. (2023). Core–shell nanofibers as carrier systems for sustained delivery of tea tree oil. Textile Research Journal, 93(21-22), 4742-4754. doi: 10.1177/00405175231180
- 19. Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P. P., ... & Mele, E. (2015). Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials
Chemistry B, 3(8), 1583-1589. doi: 10.1039/C4TB01974A
- 20. Liao, N., Unnithan, A. R., Joshi, M. K., Tiwari, A. P., Hong, S. T., Park, C. H., & Kim, C. S. (2015). Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for
wound dressing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 194-201. doi: 10.1016/j.colsurfa.2015.01.022
- 21. Lin, L., Zhu, Y., & Cui, H. (2018). Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. Lwt, 97, 711-718. doi: 10.1016/j.lwt.2018.08.015
- 22. Maroufi, L. Y., Ghorbani, M., Mohammadi, M., & Pezeshki, A. (2021). Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of
guar gum and thyme essential oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 126659. doi: 10.1016/j.colsurfa.2021.126659
- 23. Miguel, S. P., Sequeira, R. S., Moreira, A. F., Cabral, C. S., Mendonça, A. G., Ferreira, P., & Correia, I. J. (2019). An overview of electrospun membranes loaded with bioactive molecules for improving the
wound healing process. European Journal of Pharmaceutics and Biopharmaceutics, 139, 1-22. doi: 10.1016/j.ejpb.2019.03.010
- 24. Morais, M. S., Bonfim, D. P., Aguiar, M. L., & Oliveira, W. P. (2023). Electrospun poly (vinyl alcohol) nanofibrous mat loaded with green propolis extract, chitosan and nystatin as an innovative wound
dressing material. Journal of Pharmaceutical Innovation, 18(2), 704-718. doi: 10.1007/s12247-022-09681-7
- 25. Nasari, M., Semnani, D., Hadjianfar, M., & Amanpour, S. (2020). Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-
fluorouracil: An anticancer drug delivery system. Journal of Materials Science, 55(23), 10185-10201. doi: 10.1007/s10853-020-04784-3
- 26. Sabra, S., Ragab, D. M., Agwa, M. M., & Rohani, S. (2020). Recent advances in electrospun nanofibers for some biomedical applications. European Journal of Pharmaceutical Sciences, 144, 105224.
doi: 10.1016/j.ejps.2020.105224
- 27. Sruthi, R., Balagangadharan, K., & Selvamurugan, N. (2020). Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone
regeneration. Colloids and Surfaces B: Biointerfaces, 193, 111110. doi: 10.1016/j.colsurfb.2020.111110
- 28. Stoleru, E., & Brebu, M. (2021). Stabilization techniques of essential oils by incorporation into biodegradable polymeric materials for food packaging. Molecules, 26(20), 6307. doi:
10.3390/molecules26206307
- 29. Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R. (2011). Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings.
Journal of Applied Polymer Science, 121(5), 2893-2899. doi: 10.1002/app.33915
- 30. Sun, B., Duan, B., & Yuan, X. (2006). Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 102(1), 39-45. doi: 10.1002/app.24297
- 31. Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H., Detsch, R., & Boccaccini, A. R. (2019). Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove
essential oil for antibacterial wound dressing. Pharmaceutics, 11(11), 570. doi: 10.3390/pharmaceutics11110570
- 32. Varsei, M., Tanha, N. R., Gorji, M., & Mazinani, S. (2021). Fabrication and optimization of PCL/PVP nanofibers with Lawsonia inermis for antibacterial wound dressings. Polymers and Polymer
Composites, 29(9_suppl), S1403-S1413. doi: 10.1177/0967391121105330
- 33. Zhang, C., Feng, F., & Zhang, H. (2018). Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science & Technology, 80, 175-186. doi: 10.1016/j.tifs.2018.08.005
- 34. Zhang, Y., Zhang, Y., Zhu, Z., Jiao, X., Shang, Y., & Wen, Y. (2019). Encapsulation of thymol in biodegradable nanofiber via coaxial eletrospinning and applications in fruit preservation. Journal of
agricultural and food chemistry, 67(6), 1736-1741. doi: 10.1021/acs.jafc.8b06362
- 35. Zhu, L. F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., & Chang, M. W. (2019). A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of
Pharmaceutical Sciences, 137, 105002. doi: 10.1016/j.ejps.2019.105002