INVESTIGATION AND ANALYSIS OF NEW FIBER FROM ALLIUM FISTULOSUM L. (SCALLION) PLANT’S TASSEL AND ITS SUITABILITY FOR FIBER-REINFORCED COMPOSITES
Year 2024,
Volume: 29 Issue: 1, 51 - 66, 22.04.2024
Oğuz Eryılmaz
,
Sabih Ovalı
Abstract
Eco-friendly materials receive more attention due to the necessity of addressing pollution and resource depletion in the face of exponential industrial expansion. Natural fibers provide a sustainable substitution, especially in green composites. This study investigated the feasibility of Allium fistulosum L. (Scallion) as a fiber resource for composite applications by using its tassel. Allium fistulosum L. is derived from a widely available plant and its waste tassels of the plant provide fiber properties and have the potential to be a reinforcing component in composites. The investigation involves characterizing Allium fistulosum L. (AfL) fibers through various analyses. The density of the AfL was determined approximately 1.35 – 1.45 g/cm3. The percentages of lignin, hemicellulose, and cellulose were found to be 24.31%, 29.73%, and 38.36%, respectively. FTIR and XRD analysis affirm AfL's cellulose, hemicellulose, and lignin presence. SEM images indicate a rough surface, necessitating modification for better matrix compatibility. TGA shows suitable thermal stability, majorly degrading beyond 267°C. Tensile testing demonstrates a tensile strength of 22.19 ±3.75 MPa and 0.87 ±0.16 GPa modulus, exceeding some natural fibers like aerial banyan tree roots and Cordia dichotoma. Results show promising features, indicating the viability of AfL fibers in composites with reduced environmental impact and economic benefits.
References
-
1. Balaji, A. and Nagarajan, K. (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves, Carbohydrate Polymers, 174, 200-208. https://doi.org/10.1016/j.carbpol.2017.06.065
-
2. Balasundar, P., Narayanasamy, P., Senthamaraikannan, P., Senthil, S., Prithivirajan, R., and Ramkumar T. (2018) Extraction and Characterization of New Natural Cellulosic Chloris barbata Fiber,
Journal of Natural Fibers, 15(3), 436-444. https://doi.org/10.1080/15440478.2017.1349015
-
3. Baskaran, P. G., Kathiresan, M., Senthamaraikannan, P., and Saravanakumar, S. S. (2018) Characterization of New Natural Cellulosic Fiber from the Bark of Dichrostachys Cinerea, Journal of Natural
Fibers, 15(1), 62-68. https://doi.org/10.1080/15440478.2017.1304314
-
4. Belouadah, Z., Ati A., and Rokbi, M. (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L, Carbohydrate Polymers 134, 429-437. https://doi.org/10.1016/j.carbpol.2015.08.024
-
5. Ilaiya, P. C., and Sarala, R. (2020) Characterization of a new natural cellulosic fiber extracted from Derris scandens stem, International Journal of Biological Macromolecules, 165, 2303-2313.
https://doi.org/10.1016/j.ijbiomac.2020.10.086
-
6. Eryilmaz, O., Kocak E. D., and Sancak, E. (2023) Braided natural fiber preforms. Multiscale Textile Preforms and Structures for Natural Fiber Composites, Woodhead Publishing, 221-237.
https://doi.org/10.1016/B978-0-323-95329-0.00007-7
-
7. Eryilmaz, O., and Sancak, E. (2021) Effect of silane coupling treatments on mechanical properties of epoxy based high-strength carbon fiber regular (2 x 2) braided fabric composites, Polymer
Composites, 42(12), 6455-6466. https://doi.org/10.1002/pc.26311
-
8. Eryilmaz, O., Sonmez, S., Ovalı S., and Jois K. (2020) Investigation of the Water–Based Ink Hold onto the Thermoplastic Composites Reinforced with Sisal Fibers, Journal of Textile Science Fashion
Technology, 5(3). https://dx.doi.org/10.33552/JTSFT.2020.05.000612
-
9. French, A. D., Santiago C, M. (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose, 20(1),583–588. https://doi.org/10.1007/s10570-012-9833-y
-
10. Ganapathy, T., Sathiskumar, R., Senthamaraikannan, P., Saravanakumar, S. S. and Khan A. (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial
roots of banyan tree, International Journal of Biological Macromolecules, 138, 573-581. https://doi.org/10.1016/j.ijbiomac.2019.07.136
-
11. Gopinath, R., Ganesan, K., Saravanakumar, S. S. and Poopathi, R. (2016) Characterization of new cellulosic fiber from the stem of Sida rhombifolia, International Journal of Polymer Analysis and
Characterization, 21(2), 123-129. https://doi.org/10.1080/1023666X.2016.1117712
-
12. Holbery, J., and Houston, D. (2006) Natural-fiber-reinforced polymer composites in automotive applications, JOM, 58(11), 80-86. https://doi.org/10.1007/s11837-006-0234-2
-
13. Indran, S., Edwin, R. R. and Sreenivasan, V. S. (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root, Carbohydrate Polymers, 110, 423-429.
https://doi.org/10.1016/j.carbpol.2014.04.051
-
14. Jayaramudu, J., Guduri, B. R., and Varada R. A. (2010) Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymers, 79(4), 847-851.
https://doi.org/10.1016/j.carbpol.2009.10.046
-
15. Jayaramudu, J., Maity, A. , Sadiku, E. R., Guduri, B. R., Varada, R. A., Ramana, C. V. V., and Li, R. (2011) Structure and properties of new natural cellulose fabrics from Cordia dichotoma, Carbohydrate
Polymers, 86(4), 1623-1629. https://doi.org/10.1016/j.carbpol.2011.06.071
-
16. Jebadurai, S. G., Raj, R. E., Sreenivasan V. S., and Binoj, J. S. (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem, Carbohydrate Polymers, 207, 675-683.
https://doi.org/10.1016/j.carbpol.2018.12.027
-
17. Kılınç, A. Ç., Köktaş, S., Seki, Y., Atagür, M., Dalmış, R., Erdoğan, Ü. H., Göktaş, A. A., and Seydibeyoğlu, M. Ö. (2018) Extraction and investigation of lightweight and porous natural fiber from Conium
maculatum as a potential reinforcement for composite materials in transportation, Composites Part B: Engineering 140, 1-8. https://doi.org/10.1016/j.compositesb.2017.11.059
-
18. Kim, S. H., Yoon, J. B., Han, J., Seo, Y. A., Kang, B.H., Lee, J., and Ochar, K. (2023) Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic
Significance, Foods, 12(24), 4-20. https://doi.org/10.3390/foods12244503.
-
19. Kumar, R., Sivaganesan, S., Senthamaraikannan, P., Saravanakumar, S. S., Khan, A., Daniel, A. A. S., and Loganathan, L. (2022) Characterization of New Cellulosic Fiber from the Bark of Acacia
nilotica L. Plant, Journal of Natural Fibers, 19(1), 199-208. https://doi.org/10.1080/15440478.2020.1738305
-
20. Kuo, M. C., Chien, M., and Ho, C. T. (1990) Novel polysulfides identified in the volatile components from Welsh onions (Allium fistulosum L. var. maichuon) and scallions (Allium fistulosum L. var.
caespitosum), Journal of Agricultural and Food Chemistry, 38(6), 1378-1381. https://doi.org/10.1021/jf00096a017
-
21. Maache, M., Bezazi, A., Amroune, S., Scarpa, F., and Dufresne, A. (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L, Carbohydrate Polymers, 171, 163-172.
https://doi.org/10.1016/j.carbpol.2017.04.096
-
22. Manimaran, P., Saravanan, S. P., Sanjay, M. R., Siengchin, S., Jawaid, M., and Khan, A. (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite
structures, Journal of Materials Research and Technology, 8(2), 1952-1963. https://doi.org/10.1016/j.jmrt.2018.12.015
-
23. Reddy, O. K., Reddy, G. S., Maheswari, C. U., Rajulu, V. A., and Rao, K. M. (2010) Structural characterization of coconut tree leaf sheath fiber reinforcement, Journal of Forestry Research, 21(1), 53-58.
https://doi.org/10.1007/s11676-010-0008-0
-
24. Ovalı, S. (2023) Characterization of lignocellulosic glycyrrhiza glabra fibers as a potential reinforcement for polymer composites, Journal of Thermoplastic Composite Materials, 36(11), 4241-4256.
https://doi.org/10.1177/08927057231151928
-
25. Kumaar, S. A., Senthilkumar, A., Sornakumar, T., Saravanakumar, S. S., and Arthanariesewaran, V. P. (2019) Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark,
Journal of Natural Fibers, 16(2), 175-184. https://doi.org/10.1080/15440478.2017.1410514
-
26. Šernek, M., Kamke, F. A., and Glasser, W. G. (2004) Comparative analysis of inactivated wood surfaces, Holzforschung, 58(1), 22-31. https://doi.org/10.1515/HF.2004.004
-
27. Segal, L,, Creely, J.J., Martin, A.E., Conrad, C.M. (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal,
29(10), 786–794. https://doi.org/10.1177/004051755902901003
-
28. Sgriccia, N., Hawley, M. C., and Misra, M. (2008) Characterization of natural fiber surfaces and natural fiber composites, Composites Part A: Applied Science and Manufacturing, 39(10), 1632-1637.
https://doi.org/10.1016/j.compositesa.2008.07.007
-
29. Shanmugasundaram, N., Rajendran, I., and Ramkumar, T. (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in
polymer composites, Carbohydrate Polymers, 195, 566-575. https://doi.org/10.1016/j.carbpol.2018.04.127
-
30. Sreenivasan, V. S., Somasundaram, S., Ravindran, D., Manikandan, V., and Narayanasamy, R. (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation, Materials & Design, 32(1), 453-461. https://doi.org/10.1016/j.matdes.2010.06.004
-
31. Wambua, P., Ivens, J., and Verpoest, I. (2003) Natural fibres: can they replace glass in fibre reinforced plastics, Composites Science and Technology, 63(9), 1259-1264.
https://doi.org/10.1016/S0266-3538(03)00096-4
-
32. Wang, X., Feng, Y., Zhou, C., Sun, Y., Wu, B., Yagoub, A. E. A., and Aboagarib, E. A. A. (2019) Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum), Food
Chemistry, 295, 432-440. https://doi.org/10.1016/j.foodchem.2019.05.145
-
33. Wang, Y., Deng, C., Cota-Ruiz, K., Peralta-Videa, J. R., Sun, Y., Rawat, S., Tan, W., Reyes, A., Hernandez-Viezcas, J. A., Niu, G, Li, C., and Gardea-Torresdey, J. L. (2020) Improvement of nutrient elements
and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles, Science of The Total Environment, 725, 138387. https://doi.org/10.1016/j.scitotenv.2020.138387
-
34. Yildiz, Z., and Eryilmaz, O. (2023) Preimpregnated natural fiber preforms. Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, 327-340.
https://doi.org/10.1016/B978-0-323-95329-0.00003-X
Allium fistulosum L. (Yeşil Soğan) Bitkisinin Püskülünden Elde Edilen Lifin İncelenmesi ve Lif Takviyeli Kompozitler İçin Uygunluğunun Analizi
Year 2024,
Volume: 29 Issue: 1, 51 - 66, 22.04.2024
Oğuz Eryılmaz
,
Sabih Ovalı
Abstract
Çevre dostu malzemeler, sanayinin giderek büyümesi karşısında kirlilik ve kaynakların tükenmesi konularının ele alınması gerekliliği nedeniyle daha fazla ilgi görmektedir. Doğal lifler, özellikle yeşil kompozitlerde sürdürülebilir bir ikame sağlamaktadır. Bu çalışmada, Allium fistulosum L. (Yeşil Soğan) bitkisinin püskülü kullanılarak kompozit uygulamaları için bir lif kaynağı olarak kullanımı araştırılmıştır. Allium fistulosum L. (AfL) yaygın olarak bulunan, yenen bir sebzedir. Bu bitkiye ait atık püskülleri lif özelliklerini göstermekte olup kompozitlerde takviye edici bir bileşen olma potansiyeline sahiptir. Bu çalışma, AfL liflerinin çeşitli analizler yoluyla karakterize edilmesini ve kompozitlere olan uygunluk analizini içermektedir. AfL'nin yoğunluğu yaklaşık 1.35 – 1.45 g/cm3 olarak belirlenmiştir. Selüloz, hemiselüloz ve lignin yüzdesi sırasıyla %38.36, %29.73 ve %24.31 olarak tespit edilmiştir. FTIR ve XRD analizleri AfL'nin selüloz, hemiselüloz ve lignin varlığını doğrulamaktadır. SEM görüntüleri, daha iyi matris uyumluluğu için modifikasyon gerektiren pürüzlü bir yüzeye işaret etmektedir. TGA, 267°C'nin ötesinde büyük ölçüde bozunarak uygun termal kararlılık göstermektedir. Mukavemet testi, 22.19 ±3.75 MPa'lık çekme mukavemeti ve 0.87 ± 0.16 GPa'lık bir elastisite modül göstermekte olup, aerial banyan tree roots ve Cordia dichotoma gibi bazı doğal liflerden mukavemetli olduğunu göstermiştir. Sonuçlar, AfL liflerinin kompozitlerde kullanımının çevresel etkiyi azaltabileceği ve ekonomik faydalar ile uygulanabilirliğini gösteren umut verici özellikler göstermektedir.
Ethical Statement
Investigation and Analysis of New Fiber from Allium fistulosum L. (Scallion) Plant’s Tassel and its Suitability for Fiber-Reinforced Composites” başlıklı makalenin çalışması için etik kurul onayına gerek yoktur.
References
-
1. Balaji, A. and Nagarajan, K. (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves, Carbohydrate Polymers, 174, 200-208. https://doi.org/10.1016/j.carbpol.2017.06.065
-
2. Balasundar, P., Narayanasamy, P., Senthamaraikannan, P., Senthil, S., Prithivirajan, R., and Ramkumar T. (2018) Extraction and Characterization of New Natural Cellulosic Chloris barbata Fiber,
Journal of Natural Fibers, 15(3), 436-444. https://doi.org/10.1080/15440478.2017.1349015
-
3. Baskaran, P. G., Kathiresan, M., Senthamaraikannan, P., and Saravanakumar, S. S. (2018) Characterization of New Natural Cellulosic Fiber from the Bark of Dichrostachys Cinerea, Journal of Natural
Fibers, 15(1), 62-68. https://doi.org/10.1080/15440478.2017.1304314
-
4. Belouadah, Z., Ati A., and Rokbi, M. (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L, Carbohydrate Polymers 134, 429-437. https://doi.org/10.1016/j.carbpol.2015.08.024
-
5. Ilaiya, P. C., and Sarala, R. (2020) Characterization of a new natural cellulosic fiber extracted from Derris scandens stem, International Journal of Biological Macromolecules, 165, 2303-2313.
https://doi.org/10.1016/j.ijbiomac.2020.10.086
-
6. Eryilmaz, O., Kocak E. D., and Sancak, E. (2023) Braided natural fiber preforms. Multiscale Textile Preforms and Structures for Natural Fiber Composites, Woodhead Publishing, 221-237.
https://doi.org/10.1016/B978-0-323-95329-0.00007-7
-
7. Eryilmaz, O., and Sancak, E. (2021) Effect of silane coupling treatments on mechanical properties of epoxy based high-strength carbon fiber regular (2 x 2) braided fabric composites, Polymer
Composites, 42(12), 6455-6466. https://doi.org/10.1002/pc.26311
-
8. Eryilmaz, O., Sonmez, S., Ovalı S., and Jois K. (2020) Investigation of the Water–Based Ink Hold onto the Thermoplastic Composites Reinforced with Sisal Fibers, Journal of Textile Science Fashion
Technology, 5(3). https://dx.doi.org/10.33552/JTSFT.2020.05.000612
-
9. French, A. D., Santiago C, M. (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose, 20(1),583–588. https://doi.org/10.1007/s10570-012-9833-y
-
10. Ganapathy, T., Sathiskumar, R., Senthamaraikannan, P., Saravanakumar, S. S. and Khan A. (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial
roots of banyan tree, International Journal of Biological Macromolecules, 138, 573-581. https://doi.org/10.1016/j.ijbiomac.2019.07.136
-
11. Gopinath, R., Ganesan, K., Saravanakumar, S. S. and Poopathi, R. (2016) Characterization of new cellulosic fiber from the stem of Sida rhombifolia, International Journal of Polymer Analysis and
Characterization, 21(2), 123-129. https://doi.org/10.1080/1023666X.2016.1117712
-
12. Holbery, J., and Houston, D. (2006) Natural-fiber-reinforced polymer composites in automotive applications, JOM, 58(11), 80-86. https://doi.org/10.1007/s11837-006-0234-2
-
13. Indran, S., Edwin, R. R. and Sreenivasan, V. S. (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root, Carbohydrate Polymers, 110, 423-429.
https://doi.org/10.1016/j.carbpol.2014.04.051
-
14. Jayaramudu, J., Guduri, B. R., and Varada R. A. (2010) Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymers, 79(4), 847-851.
https://doi.org/10.1016/j.carbpol.2009.10.046
-
15. Jayaramudu, J., Maity, A. , Sadiku, E. R., Guduri, B. R., Varada, R. A., Ramana, C. V. V., and Li, R. (2011) Structure and properties of new natural cellulose fabrics from Cordia dichotoma, Carbohydrate
Polymers, 86(4), 1623-1629. https://doi.org/10.1016/j.carbpol.2011.06.071
-
16. Jebadurai, S. G., Raj, R. E., Sreenivasan V. S., and Binoj, J. S. (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem, Carbohydrate Polymers, 207, 675-683.
https://doi.org/10.1016/j.carbpol.2018.12.027
-
17. Kılınç, A. Ç., Köktaş, S., Seki, Y., Atagür, M., Dalmış, R., Erdoğan, Ü. H., Göktaş, A. A., and Seydibeyoğlu, M. Ö. (2018) Extraction and investigation of lightweight and porous natural fiber from Conium
maculatum as a potential reinforcement for composite materials in transportation, Composites Part B: Engineering 140, 1-8. https://doi.org/10.1016/j.compositesb.2017.11.059
-
18. Kim, S. H., Yoon, J. B., Han, J., Seo, Y. A., Kang, B.H., Lee, J., and Ochar, K. (2023) Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic
Significance, Foods, 12(24), 4-20. https://doi.org/10.3390/foods12244503.
-
19. Kumar, R., Sivaganesan, S., Senthamaraikannan, P., Saravanakumar, S. S., Khan, A., Daniel, A. A. S., and Loganathan, L. (2022) Characterization of New Cellulosic Fiber from the Bark of Acacia
nilotica L. Plant, Journal of Natural Fibers, 19(1), 199-208. https://doi.org/10.1080/15440478.2020.1738305
-
20. Kuo, M. C., Chien, M., and Ho, C. T. (1990) Novel polysulfides identified in the volatile components from Welsh onions (Allium fistulosum L. var. maichuon) and scallions (Allium fistulosum L. var.
caespitosum), Journal of Agricultural and Food Chemistry, 38(6), 1378-1381. https://doi.org/10.1021/jf00096a017
-
21. Maache, M., Bezazi, A., Amroune, S., Scarpa, F., and Dufresne, A. (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L, Carbohydrate Polymers, 171, 163-172.
https://doi.org/10.1016/j.carbpol.2017.04.096
-
22. Manimaran, P., Saravanan, S. P., Sanjay, M. R., Siengchin, S., Jawaid, M., and Khan, A. (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite
structures, Journal of Materials Research and Technology, 8(2), 1952-1963. https://doi.org/10.1016/j.jmrt.2018.12.015
-
23. Reddy, O. K., Reddy, G. S., Maheswari, C. U., Rajulu, V. A., and Rao, K. M. (2010) Structural characterization of coconut tree leaf sheath fiber reinforcement, Journal of Forestry Research, 21(1), 53-58.
https://doi.org/10.1007/s11676-010-0008-0
-
24. Ovalı, S. (2023) Characterization of lignocellulosic glycyrrhiza glabra fibers as a potential reinforcement for polymer composites, Journal of Thermoplastic Composite Materials, 36(11), 4241-4256.
https://doi.org/10.1177/08927057231151928
-
25. Kumaar, S. A., Senthilkumar, A., Sornakumar, T., Saravanakumar, S. S., and Arthanariesewaran, V. P. (2019) Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark,
Journal of Natural Fibers, 16(2), 175-184. https://doi.org/10.1080/15440478.2017.1410514
-
26. Šernek, M., Kamke, F. A., and Glasser, W. G. (2004) Comparative analysis of inactivated wood surfaces, Holzforschung, 58(1), 22-31. https://doi.org/10.1515/HF.2004.004
-
27. Segal, L,, Creely, J.J., Martin, A.E., Conrad, C.M. (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal,
29(10), 786–794. https://doi.org/10.1177/004051755902901003
-
28. Sgriccia, N., Hawley, M. C., and Misra, M. (2008) Characterization of natural fiber surfaces and natural fiber composites, Composites Part A: Applied Science and Manufacturing, 39(10), 1632-1637.
https://doi.org/10.1016/j.compositesa.2008.07.007
-
29. Shanmugasundaram, N., Rajendran, I., and Ramkumar, T. (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in
polymer composites, Carbohydrate Polymers, 195, 566-575. https://doi.org/10.1016/j.carbpol.2018.04.127
-
30. Sreenivasan, V. S., Somasundaram, S., Ravindran, D., Manikandan, V., and Narayanasamy, R. (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation, Materials & Design, 32(1), 453-461. https://doi.org/10.1016/j.matdes.2010.06.004
-
31. Wambua, P., Ivens, J., and Verpoest, I. (2003) Natural fibres: can they replace glass in fibre reinforced plastics, Composites Science and Technology, 63(9), 1259-1264.
https://doi.org/10.1016/S0266-3538(03)00096-4
-
32. Wang, X., Feng, Y., Zhou, C., Sun, Y., Wu, B., Yagoub, A. E. A., and Aboagarib, E. A. A. (2019) Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum), Food
Chemistry, 295, 432-440. https://doi.org/10.1016/j.foodchem.2019.05.145
-
33. Wang, Y., Deng, C., Cota-Ruiz, K., Peralta-Videa, J. R., Sun, Y., Rawat, S., Tan, W., Reyes, A., Hernandez-Viezcas, J. A., Niu, G, Li, C., and Gardea-Torresdey, J. L. (2020) Improvement of nutrient elements
and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles, Science of The Total Environment, 725, 138387. https://doi.org/10.1016/j.scitotenv.2020.138387
-
34. Yildiz, Z., and Eryilmaz, O. (2023) Preimpregnated natural fiber preforms. Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, 327-340.
https://doi.org/10.1016/B978-0-323-95329-0.00003-X