Research Article
BibTex RIS Cite

Investigation of Methylene Blue Removal from Water by Peanut Shell with a Waste Management Approach

Year 2024, Volume: 29 Issue: 2, 331 - 346, 30.08.2024
https://doi.org/10.17482/uumfd.1452190

Abstract

The widespread use of dyestuffs, especially the development of the textile industry, creates dye pollution, which is one of the most important causes of water pollution. Today, methylene blue (MB) is the dyestuff widely used in the textile industry. In this study, the removal conditions of MM were examined by using raw peanut shell (PS), which is considered as waste, as an adsorbent. PS adsorbent taken without any treatment was used in different doses (0.1, 0.5, 1, 2, 3, 5 g) and operating times (5, 10, 15, 30, 45, 60, 90, 120, 150 min). The effects of pH values (2, 4, 6, 8, 10, and 12) and temperatures (20, 25, 30, 35, 40 °C) on the removal efficiency were investigated. In the studies conducted, the most suitable adsorption conditions were found to be: PS amount 0.5 g, operating time 15 minutes, pH 4, temperature 20 °C. When the correlation values of the isotherm models were examined, it was determined that the highest correlation value was the Langmuir isotherm (R2=0.9999). It was concluded that the realized adsorption mechanism retained MB in a single layer on the surface of the PS. It has been determined that PS used without any treatment can be used as a suitable adsorbent for dye removal with a green waste management approach.

Project Number

Bilimsel Araştırma Projesi (2023-032)

References

  • Abdullah, R., Astira, D., Zulfiani, U., Widyanto, R.A., Hidayat, R.P.A., Sulistiono, O.D., Rahmawati, Z., Gunawan, T., Kusumawati, Y., Othman, H.D.M., Fansuri, H. (2024) Fabrication of composite membrane with microcrystalline cellulose from lignocellulosic biomass as filler on cellulose acetate based membrane for water containing methylene blue treatment, Bioresource Technology Reports, 25, 101728. doi:10.1016/j.biteb.2023.101728.
  • Agarwal, S., Tyagi, I., Gupta, K.V., Ghasemi, N., Shahivand, M., Ghasemi, M. (2016) Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride, Journal of Molecular Liquids, 218, 208-218. doi: 10.1016/j.molliq.2016.02.073.
  • Amin, M.T., Alazba, A.A., Shafiq, M. (2022). Ethylenediaminetetraacetate functionalized MgFe layered double hydroxide/biochar composites for highly efficient adsorptive removal of lead ions from aqueous solutions, PLoS One, 17, e0265024. doi:/10.1371/journal.pone.0265024
  • Aydemir, Z. (2023). Metilen mavisinin magnetik aktif karbon ile adsorpsiyonunun incelenmesi, Yüksek Lisans Tezi, S.A.Ü Fen Bilimleri Enstitüsü, Sakarya.
  • Bahadir, T., Gök, G., Çelebi, H., Şimşek, İ., Gök, O. (2023) Seafood wastes as an attractive biosorbent: chitin-based shrimp shells, Water, Air, & Soil Pollution, 234, 145, doi: /10.1007/s11270-023-06167-1
  • Bahadir, T., Şimşek, I., Tulun, Ş., Çelebi, H. (2023) Use of different food wastes as green biosorbent: isotherm, kinetic, and thermodynamic studies of Pb2+. Environmental Science and Pollution Research, 30, 103324-103338. doi: 10.1007/s11356-023-29745-6.
  • Bilgin M. and Tulun, Ş. (2015) Use of diatomite for the removal of lead ions from water: thermodynamics and kinetics, Biotechnology & Biotechnological Equipment, 29(4), 696-704. doi:10.1080/13102818.2015.1039059.
  • Biswas, S., Bal, M., Behera, S., Sen, T., Meikap, B. (2019) Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM), Water, 11(2), 325. doi:/10.3390/w11020325
  • Bryan, Y.K.M., Chai, V.P., Law, Y.J., Mahmoudi, E. (2022) Graphene oxide-chitosan composite material as adsorbent in removing methylene blue dye from synthetic wastewater, Materials Today: Proceedings, 64, 1587-1596. doi: 10.1016/j.matpr.2022.03.092.
  • Budnyak, M.T., Aminzadeh, S., Pylypchuk, V.I., Sternik, D., Tertykh, A.V., Lindström, E.M., Sevastyanova, O. (2018) Methylene Blue dye sorption by hybrid materials from technical lignins, Journal of Environmental Chemical Engineering, 6, 4997-5007. doi: 10.1016/j.jece.2018.07.041.
  • Burk, G.A., Herath, A., Crisler, G.B., Bridges, D., Patel, S., Pittman, C.U., Mlsna, T. (2020). Cadmium and copper removal from aqueous solutions using chitosan-coated gasifier biochar, Frontiers in Environmental Science, 8, 541203. doi:/10.3389/fenvs.2020.541203
  • Çelebi, H., Bilican, İ., Şimşek, İ., Bahadır, T., Tulun, Ş. (2024). Sentetik atıksulardan reaktif sarı 145 boyasının uzaklaştırılması: yer fıstığı kabuklarının adsorban olarak değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 12(1), 190-204. doi:10.21923/jesd.1445574
  • Dang, J., Wang, H., Wang, C. (2021). Adsorption of toxic zinc by functionalized lignocellulose derived from waste biomass: Kinetics, isotherms and thermodynamics. Sustainability, 13(19), 10673. doi:/10.3390/su131910673
  • Dubinin M.M and Radushkevich L.V. (1947) Equation of the Characteristic Curve of Activated Charcoal, Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331-337.
  • El-Kousy, M.S., El-Shorbagy, G.H., Abd El-Ghaffar, A.M. (2020), Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions, Materials Chemistry and Physics, 254, 123236. doi: 10.1016/j.matchemphys.2020.123236.
  • Freundlich H.M.F. (1906) Uber die adsorption in lasungen, Journal of Physical Chemistry, 57, 370-385.
  • Gómez Aguilar, D.L., Rodríguez Miranda, J.P., Astudillo Miller, M.X., Maldonado Astudillo, R.I., Esteban Muñoz, J.A. (2020). Removal of Zn (II) in synthetic wastewater using agricultural wastes. Metals, 10(11), 1465. doi:/10.3390/met10111465
  • Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T. (1966) Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption Under Constant-Pattern Conditions, Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.doi: 10.1021/i160018a011.
  • Ho Y.S. and McKay G. (1999) Pseudo-Second Order Model for Sorption Processes, Process Biochemistry, 34(5), 451-465. doi: 10.1016/S0032-9592(98)00112-5.
  • Khalid, Q., Khan, A., Bhatti, H.N., Sadaf, S., Kausar, A., Alissa, S.A., Alghaith, M.K., Igbal, M. (2021) Cellulosic biomass biocomposites with polyaniline, polypyrrole and sodium alginate: Insecticide adsorption-desorption, equilibrium and kinetics studies. Arabian Journal of Chemistry, 14, 103227. doi:/10.1016/j.arabjc.2021.103227
  • Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, I. (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation, Water, 14(2), 242. doi:/10.3390/w14020242
  • Langmuir I. (1916), The constitution and fundamental properties of solids and liquids Part I. Solids, Journal of the American Chemical Society, 38(11), 2221-2295.doi: 10.1016/S0016- 0032(17)90938-X.
  • Lin, L., Yang, H., Xu, X. (2022) Effects of water pollution on human health and disease heterogeneity: a review, Frontiers in Environmental Science, 10, 880246. doi: 10.3389/fenvs.2022.880246.
  • Liu, C., Omer, M.A., Ouyang, X. (2018), Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies, International Journal of Biological Macromolecules, 106, 823- 833. doi: 10.1016/j.ijbiomac.2017.08.084.
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. (2017) Rapid methylene blue adsorption using modified lignocellulosic materials, Process Safety and Environmental Protection, 107, 346-356. doi: 10.1016/j.psep.2017.03.008.
  • Munagapati, V.S., Wen, H.Y., Wen, J.C., Gollakota, A.R.K., Shu, C.M., Lin, K.Y.A., Wen, J.H. (2022) Adsorption of Reactive Red 195 from aqueous medium using Lotus (Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. International Journal of Phytoremediation, 24(2), 131-144. doi:/10.1080/15226514.2021.1929060
  • Muntean, S.G., Nistor, M.A., Nastas, R., Petuhov, O. (2023) Dyes and heavy metals removal from aqueous solutions using raw and modified diatomite, Processes, 11, 2245. doi:/10.3390/pr11082245
  • Özüsoy M. (2022). Atık biyokütleden elde edilen aktif karbonun metilen mavisi adsorpsiyonunda kullanımı, Yüksek Lisans Tezi, A.K.Ü. Fen Bilimleri Enstitüsü, Afyon.
  • Pamukoglu, M.Y. and Kargi F. (2006) Batch kinetics and isotherms for biosorption of copper(II) ions onto pre-treated powdered waste sludge (PWS), Journal of Hazardous Materials, 138(3), 479-484, doi: /10.1016/j.jhazmat.2006.05.065
  • Pamukoglu, M.Y. and Kargi F. (2007) Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS), Enzyme and Microbial Technology, 42(1), 76-82. doi: /10.1016/j.enzmictec.2007.08.004
  • Pamukoglu, M.Y., Kirkan, B., Yoldas, B. (2022) Green synthesis of SiNH2@FeNP nanocomposite using and removal of methylene blue from aqueous solution: experimental design approach, International Journal of Environmental Analytical Chemistry, 1-19. doi: /10.1080/03067319.2022.2087516
  • Serkan, B. (2018) Metilen mavisinin doğal kil üzerine adsorpsiyonu, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 264-272. doi: 10.17714/gumusfenbil.344748.
  • Seven, M.F. (2023). Azot yüklü biyokömür/kitosankompozitlerin atık sulardan boyarmadde adsorpsiyonunda kullanımının incelenmesi, Yüksek Lisans Tezi, F.Ü. Fen Bilimleri Enstitüsü, Elazığ.
  • Siddiqui, I.S., Rath, G., Chaudhry, A.S. (2018) Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies, Journal of Molecular Liquids, 264, 275-284. doi: 10.1016/j.molliq.2018.05.065.
  • Silva, C.E. de F., Gama, B.M.V. da, Gonçalves, A.H. da S., Medeiros, J.A., de Souza Abud, A.K. (2020) Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. Journal of King Saud University - Engineering Sciences, 32, 351–359. doi:/10.1016/j.jksues.2019.04.006
  • Temkin M. and Pyzhev V. (1940) Recent Modifications to Langmuir Isotherms, Acta Physical Chemistry, 12, 217-225.
  • Türkyılmaz, A. (2018) Sulu çözeltilerden nano kil (halosit) yüzeyine metilen mavisi adsorpsiyonu ve kinetiği, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 413- 424. doi: 10.25092/baunfbed.468681.
  • Vakili, M., Gholami, F., Zwain, M.H., Wang, W., Mojiri, A., Gholami, Z., Tomas, M., Giwa, S.A., Cagnetta, G. (2023) Treatment of As(III)-contaminated food waste using alkali treatment and its potential applications for methylene blue removal from aqueous solutions, Journal of Water Process Engineering, 55, 104100. doi: 10.1016/j.jwpe.2023.104100.
  • Vedula, S.S. and Yadav, D.G. (2022) Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: development of membrane, characterization and kinetics of adsorption, Journal of the Indian Chemical Society, 99, 100263. doi: 10.1016/j.jics.2021.100263.
  • Wakkel, M., Khiari, B., Zagrouba, F. (2019) Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent, Journal of the Taiwan Institute of Chemical Engineers, 96, 439-452. doi: 10.1016/j.jtice.2018.12.014.
  • Wang, N., Hu, Y., Zhang, Z. (2017) Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue, Applied Clay Science, 150, 47-55. doi: /10.1016/j.clay.2017.08.024.
  • Yadav, B.S. and Dasgupta, S. (2022) Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorganic Chemistry Communications, 137, 109203. doi:/10.1016/j.inoche.2022.109203
  • Youcef, D.L., Belaroui, S.L., López-Galindo, A. (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite, Applied Clay Science, 179, 105145. doi: /10.1016/j.clay.2019.105145.

FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ

Year 2024, Volume: 29 Issue: 2, 331 - 346, 30.08.2024
https://doi.org/10.17482/uumfd.1452190

Abstract

Boyar maddelerin kullanımının yaygınlaşması, özellikle tekstil endüstrisinin gelişmesi su kirliliğinin en önemli nedenlerinden bir olan boya kirliliğini oluşturmaktadır. Günümüzde metilen mavisi (MM), tekstil endüstrisinde yaygın olarak kullanılan boyar maddedir. Bu çalışmada, atık olarak kabul edilen ham yer fıstığı kabuğunun (YFK) adsorbent olarak kullanılarak metilen mavisinin (MM) giderim şartları incelenmiştir. Herhangi bir işlem yapılmadan alınan YFK adsorbentinin farklı dozlarda (0,1, 0,5, 1, 2, 3, 5 g), işletme sürelerinde (5, 10, 15, 30, 45, 60, 90, 120, 150 dk), pH değerlerinde (2, 4, 6, 8, 10, 12) ve sıcaklıklarında (20, 25, 30, 35, 40 °C) giderim verimine etkileri araştırılmıştır. Yapılan çalışmalarda, en uygun adsorpsiyon şartları: YFK miktarı 0,5 g, işletme süresi 15 dakika, pH 4, sıcaklık 20 °C olarak bulunmuştur. İzoterm modellerinin korelasyon değerleri incelendiğinde en yüksek korelasyon değeri Langmuir izotermine (R2=0,9999) olduğu belirlenmiştir. Gerçekleşen adsorpsiyon mekanizması YFK’nın yüzeyinde tek bir tabaka halinde MM tutulduğu sonucuna varılmıştır. Herhangi bir işlem yapılmadan kullanılan YFK’nın yeşil atık yönetimi yaklaşımı ile boyar madde giderimi için uygun bir adsorbent olarak kullanılabileceği belirlenmiştir.

Supporting Institution

Aksaray Üniversitesi

Project Number

Bilimsel Araştırma Projesi (2023-032)

Thanks

Bu çalışma Aksaray Üniversitesi Bilimsel Araştırma Projesi (2023-032) tarafından desteklenmiştir.

References

  • Abdullah, R., Astira, D., Zulfiani, U., Widyanto, R.A., Hidayat, R.P.A., Sulistiono, O.D., Rahmawati, Z., Gunawan, T., Kusumawati, Y., Othman, H.D.M., Fansuri, H. (2024) Fabrication of composite membrane with microcrystalline cellulose from lignocellulosic biomass as filler on cellulose acetate based membrane for water containing methylene blue treatment, Bioresource Technology Reports, 25, 101728. doi:10.1016/j.biteb.2023.101728.
  • Agarwal, S., Tyagi, I., Gupta, K.V., Ghasemi, N., Shahivand, M., Ghasemi, M. (2016) Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride, Journal of Molecular Liquids, 218, 208-218. doi: 10.1016/j.molliq.2016.02.073.
  • Amin, M.T., Alazba, A.A., Shafiq, M. (2022). Ethylenediaminetetraacetate functionalized MgFe layered double hydroxide/biochar composites for highly efficient adsorptive removal of lead ions from aqueous solutions, PLoS One, 17, e0265024. doi:/10.1371/journal.pone.0265024
  • Aydemir, Z. (2023). Metilen mavisinin magnetik aktif karbon ile adsorpsiyonunun incelenmesi, Yüksek Lisans Tezi, S.A.Ü Fen Bilimleri Enstitüsü, Sakarya.
  • Bahadir, T., Gök, G., Çelebi, H., Şimşek, İ., Gök, O. (2023) Seafood wastes as an attractive biosorbent: chitin-based shrimp shells, Water, Air, & Soil Pollution, 234, 145, doi: /10.1007/s11270-023-06167-1
  • Bahadir, T., Şimşek, I., Tulun, Ş., Çelebi, H. (2023) Use of different food wastes as green biosorbent: isotherm, kinetic, and thermodynamic studies of Pb2+. Environmental Science and Pollution Research, 30, 103324-103338. doi: 10.1007/s11356-023-29745-6.
  • Bilgin M. and Tulun, Ş. (2015) Use of diatomite for the removal of lead ions from water: thermodynamics and kinetics, Biotechnology & Biotechnological Equipment, 29(4), 696-704. doi:10.1080/13102818.2015.1039059.
  • Biswas, S., Bal, M., Behera, S., Sen, T., Meikap, B. (2019) Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM), Water, 11(2), 325. doi:/10.3390/w11020325
  • Bryan, Y.K.M., Chai, V.P., Law, Y.J., Mahmoudi, E. (2022) Graphene oxide-chitosan composite material as adsorbent in removing methylene blue dye from synthetic wastewater, Materials Today: Proceedings, 64, 1587-1596. doi: 10.1016/j.matpr.2022.03.092.
  • Budnyak, M.T., Aminzadeh, S., Pylypchuk, V.I., Sternik, D., Tertykh, A.V., Lindström, E.M., Sevastyanova, O. (2018) Methylene Blue dye sorption by hybrid materials from technical lignins, Journal of Environmental Chemical Engineering, 6, 4997-5007. doi: 10.1016/j.jece.2018.07.041.
  • Burk, G.A., Herath, A., Crisler, G.B., Bridges, D., Patel, S., Pittman, C.U., Mlsna, T. (2020). Cadmium and copper removal from aqueous solutions using chitosan-coated gasifier biochar, Frontiers in Environmental Science, 8, 541203. doi:/10.3389/fenvs.2020.541203
  • Çelebi, H., Bilican, İ., Şimşek, İ., Bahadır, T., Tulun, Ş. (2024). Sentetik atıksulardan reaktif sarı 145 boyasının uzaklaştırılması: yer fıstığı kabuklarının adsorban olarak değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 12(1), 190-204. doi:10.21923/jesd.1445574
  • Dang, J., Wang, H., Wang, C. (2021). Adsorption of toxic zinc by functionalized lignocellulose derived from waste biomass: Kinetics, isotherms and thermodynamics. Sustainability, 13(19), 10673. doi:/10.3390/su131910673
  • Dubinin M.M and Radushkevich L.V. (1947) Equation of the Characteristic Curve of Activated Charcoal, Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331-337.
  • El-Kousy, M.S., El-Shorbagy, G.H., Abd El-Ghaffar, A.M. (2020), Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions, Materials Chemistry and Physics, 254, 123236. doi: 10.1016/j.matchemphys.2020.123236.
  • Freundlich H.M.F. (1906) Uber die adsorption in lasungen, Journal of Physical Chemistry, 57, 370-385.
  • Gómez Aguilar, D.L., Rodríguez Miranda, J.P., Astudillo Miller, M.X., Maldonado Astudillo, R.I., Esteban Muñoz, J.A. (2020). Removal of Zn (II) in synthetic wastewater using agricultural wastes. Metals, 10(11), 1465. doi:/10.3390/met10111465
  • Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T. (1966) Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption Under Constant-Pattern Conditions, Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.doi: 10.1021/i160018a011.
  • Ho Y.S. and McKay G. (1999) Pseudo-Second Order Model for Sorption Processes, Process Biochemistry, 34(5), 451-465. doi: 10.1016/S0032-9592(98)00112-5.
  • Khalid, Q., Khan, A., Bhatti, H.N., Sadaf, S., Kausar, A., Alissa, S.A., Alghaith, M.K., Igbal, M. (2021) Cellulosic biomass biocomposites with polyaniline, polypyrrole and sodium alginate: Insecticide adsorption-desorption, equilibrium and kinetics studies. Arabian Journal of Chemistry, 14, 103227. doi:/10.1016/j.arabjc.2021.103227
  • Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, I. (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation, Water, 14(2), 242. doi:/10.3390/w14020242
  • Langmuir I. (1916), The constitution and fundamental properties of solids and liquids Part I. Solids, Journal of the American Chemical Society, 38(11), 2221-2295.doi: 10.1016/S0016- 0032(17)90938-X.
  • Lin, L., Yang, H., Xu, X. (2022) Effects of water pollution on human health and disease heterogeneity: a review, Frontiers in Environmental Science, 10, 880246. doi: 10.3389/fenvs.2022.880246.
  • Liu, C., Omer, M.A., Ouyang, X. (2018), Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies, International Journal of Biological Macromolecules, 106, 823- 833. doi: 10.1016/j.ijbiomac.2017.08.084.
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. (2017) Rapid methylene blue adsorption using modified lignocellulosic materials, Process Safety and Environmental Protection, 107, 346-356. doi: 10.1016/j.psep.2017.03.008.
  • Munagapati, V.S., Wen, H.Y., Wen, J.C., Gollakota, A.R.K., Shu, C.M., Lin, K.Y.A., Wen, J.H. (2022) Adsorption of Reactive Red 195 from aqueous medium using Lotus (Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. International Journal of Phytoremediation, 24(2), 131-144. doi:/10.1080/15226514.2021.1929060
  • Muntean, S.G., Nistor, M.A., Nastas, R., Petuhov, O. (2023) Dyes and heavy metals removal from aqueous solutions using raw and modified diatomite, Processes, 11, 2245. doi:/10.3390/pr11082245
  • Özüsoy M. (2022). Atık biyokütleden elde edilen aktif karbonun metilen mavisi adsorpsiyonunda kullanımı, Yüksek Lisans Tezi, A.K.Ü. Fen Bilimleri Enstitüsü, Afyon.
  • Pamukoglu, M.Y. and Kargi F. (2006) Batch kinetics and isotherms for biosorption of copper(II) ions onto pre-treated powdered waste sludge (PWS), Journal of Hazardous Materials, 138(3), 479-484, doi: /10.1016/j.jhazmat.2006.05.065
  • Pamukoglu, M.Y. and Kargi F. (2007) Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS), Enzyme and Microbial Technology, 42(1), 76-82. doi: /10.1016/j.enzmictec.2007.08.004
  • Pamukoglu, M.Y., Kirkan, B., Yoldas, B. (2022) Green synthesis of SiNH2@FeNP nanocomposite using and removal of methylene blue from aqueous solution: experimental design approach, International Journal of Environmental Analytical Chemistry, 1-19. doi: /10.1080/03067319.2022.2087516
  • Serkan, B. (2018) Metilen mavisinin doğal kil üzerine adsorpsiyonu, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 264-272. doi: 10.17714/gumusfenbil.344748.
  • Seven, M.F. (2023). Azot yüklü biyokömür/kitosankompozitlerin atık sulardan boyarmadde adsorpsiyonunda kullanımının incelenmesi, Yüksek Lisans Tezi, F.Ü. Fen Bilimleri Enstitüsü, Elazığ.
  • Siddiqui, I.S., Rath, G., Chaudhry, A.S. (2018) Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies, Journal of Molecular Liquids, 264, 275-284. doi: 10.1016/j.molliq.2018.05.065.
  • Silva, C.E. de F., Gama, B.M.V. da, Gonçalves, A.H. da S., Medeiros, J.A., de Souza Abud, A.K. (2020) Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. Journal of King Saud University - Engineering Sciences, 32, 351–359. doi:/10.1016/j.jksues.2019.04.006
  • Temkin M. and Pyzhev V. (1940) Recent Modifications to Langmuir Isotherms, Acta Physical Chemistry, 12, 217-225.
  • Türkyılmaz, A. (2018) Sulu çözeltilerden nano kil (halosit) yüzeyine metilen mavisi adsorpsiyonu ve kinetiği, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 413- 424. doi: 10.25092/baunfbed.468681.
  • Vakili, M., Gholami, F., Zwain, M.H., Wang, W., Mojiri, A., Gholami, Z., Tomas, M., Giwa, S.A., Cagnetta, G. (2023) Treatment of As(III)-contaminated food waste using alkali treatment and its potential applications for methylene blue removal from aqueous solutions, Journal of Water Process Engineering, 55, 104100. doi: 10.1016/j.jwpe.2023.104100.
  • Vedula, S.S. and Yadav, D.G. (2022) Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: development of membrane, characterization and kinetics of adsorption, Journal of the Indian Chemical Society, 99, 100263. doi: 10.1016/j.jics.2021.100263.
  • Wakkel, M., Khiari, B., Zagrouba, F. (2019) Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent, Journal of the Taiwan Institute of Chemical Engineers, 96, 439-452. doi: 10.1016/j.jtice.2018.12.014.
  • Wang, N., Hu, Y., Zhang, Z. (2017) Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue, Applied Clay Science, 150, 47-55. doi: /10.1016/j.clay.2017.08.024.
  • Yadav, B.S. and Dasgupta, S. (2022) Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorganic Chemistry Communications, 137, 109203. doi:/10.1016/j.inoche.2022.109203
  • Youcef, D.L., Belaroui, S.L., López-Galindo, A. (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite, Applied Clay Science, 179, 105145. doi: /10.1016/j.clay.2019.105145.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Research Articles
Authors

Hakan Çelebi 0000-0002-7726-128X

Şevket Tulun 0000-0002-0570-7617

İsmail Şimşek 0000-0003-1950-5159

Tolga Bahadır 0000-0001-9647-0338

İsmail Bilican 0000-0002-4415-6803

Project Number Bilimsel Araştırma Projesi (2023-032)
Early Pub Date August 20, 2024
Publication Date August 30, 2024
Submission Date March 13, 2024
Acceptance Date April 18, 2024
Published in Issue Year 2024 Volume: 29 Issue: 2

Cite

APA Çelebi, H., Tulun, Ş., Şimşek, İ., Bahadır, T., et al. (2024). FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(2), 331-346. https://doi.org/10.17482/uumfd.1452190
AMA Çelebi H, Tulun Ş, Şimşek İ, Bahadır T, Bilican İ. FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ. UUJFE. August 2024;29(2):331-346. doi:10.17482/uumfd.1452190
Chicago Çelebi, Hakan, Şevket Tulun, İsmail Şimşek, Tolga Bahadır, and İsmail Bilican. “FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 2 (August 2024): 331-46. https://doi.org/10.17482/uumfd.1452190.
EndNote Çelebi H, Tulun Ş, Şimşek İ, Bahadır T, Bilican İ (August 1, 2024) FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 2 331–346.
IEEE H. Çelebi, Ş. Tulun, İ. Şimşek, T. Bahadır, and İ. Bilican, “FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ”, UUJFE, vol. 29, no. 2, pp. 331–346, 2024, doi: 10.17482/uumfd.1452190.
ISNAD Çelebi, Hakan et al. “FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/2 (August 2024), 331-346. https://doi.org/10.17482/uumfd.1452190.
JAMA Çelebi H, Tulun Ş, Şimşek İ, Bahadır T, Bilican İ. FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ. UUJFE. 2024;29:331–346.
MLA Çelebi, Hakan et al. “FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 2, 2024, pp. 331-46, doi:10.17482/uumfd.1452190.
Vancouver Çelebi H, Tulun Ş, Şimşek İ, Bahadır T, Bilican İ. FISTIK KABUĞU İLE SULARDAN METİLEN MAVİSİ GİDERİMİNİN ATIK YÖNETİMİ YAKLAŞIMIYLA İNCELENMESİ. UUJFE. 2024;29(2):331-46.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.