Araştırma Makalesi
BibTex RIS Kaynak Göster

GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ

Yıl 2024, Cilt: 29 Sayı: 3, 843 - 862
https://doi.org/10.17482/uumfd.1571743

Öz

Çimentolu sistemlerin mekanik özelliklerini iyileştirebilmek ve süneklik kazandırmak amacı ile genellikle karışımlara lif ilave edilmektedir. Doğal liflerin üretim maliyetinin daha düşük olması, daha az karbon emisyonu ve fosil yakıt tüketimi, biyolojik olarak parçalanabilirlik, daha düşük yoğunluk ve imalat kolaylığı gibi çevresel etkilerinin daha az olması nedeniyle tercih edilmektedir. Diğer yandan, grafen türevi malzemelerin, lif-matris mekanik ve arayüz özelliklerini iyileştirici bir etki gösterdiği kanıtlanmıştır. Bu çalışma kapsamında, grafen-oksit (GO) ile yüzey iyileştirme işlemine tabi tutulan jüt liflerinin harç karışımlarının işlenebilirliğine, basınç dayanımı, eğilme dayanımı, su emme ve kuruma-büzülme performanslarına etkisi araştırılmıştır. Deneysel çalışma kapsamında lif içermeyen kontrol karışımına ilaveten, 0,5 ve 1 cm uzunluğuna sahip GO kaplamalı ve kaplamasız jüt lifler toplam hacmin %0,1, 0,3 ve 0,5 oranlarında karışıma ilave edilerek farklı lifli harç karışımları hazırlanmıştır. Deney sonuçlarına göre lif içeren karışımlarda su azaltıcı katkı ihtiyacı artmıştır. Karışımlara 0,5 cm ve %0,1 lif ilave edilmesi basınç ve eğilme dayanımlarını artırmıştır. GO kaplama yapılması kaplamasız liflere kıyasla dayanımların bir miktar artmasını sağlamıştır. Su emme oranları basınç dayanımı ile ters orantı göstermiştir. Lif ilave edilmesi kuruma-büzülme miktarlarını düşürmüştür. GO kaplama yapılan lifler bu durumda olumlu yönde daha etkili olmuştur. Ancak GO kaplı lif içeriklerinin %0,1’den fazla olması kuruma-büzülmelerin artmasına neden olmuştur.

Destekleyen Kurum

Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP)

Proje Numarası

211N036

Teşekkür

Bu çalışma Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP) tarafından desteklenmiştir. Ayrıca çalışma esnasında desteklerinden dolayı Prof. Dr. Ayşe Bedeloğlu, Prof. Dr. Ali Mardani, Dr. Öğr. Üyesi Yasin Altın ve Arş. Gör. Arif Benlioğlu'na teşekkür ederim.

Kaynakça

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and building materials, 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ali, B., Hawreen, A., Kahla, N. B., Amir, M. T., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. https://doi.org/10.1016/j.conbuildmat.2022.128957
  • Alomayri, T., & Ali, B. (2023). Investigating the load-deflection behaviour and drying shrinkage resistance of HPC reinforced using different cellulose fibres. Journal of Building Engineering, 73, 106714. https://doi.org/10.1016/j.jobe.2023.106714
  • Aluko, O. G., Yatim, J. M., Kadir, M. A. A., & Yahya, K. (2020). A review of properties of bio-fibrous concrete exposed to elevated temperatures. Construction and Building Materials, 260, 119671. https://doi.org/10.1016/j.conbuildmat.2020.119671
  • Asprone, D., Durante, M., Prota, A., & Manfredi, G. (2011). Potential of structural pozzolanic matrix–hemp fiber grid composites. Construction and Building Materials, 25(6), 2867-2874. https://doi.org/10.1016/j.conbuildmat.2010.12.046
  • Aziz, M. A., Paramasivam, P., & Lee, S. L. (1981). Prospects for natural fibre reinforced concretes in construction. International Journal of Cement Composites and Lightweight Concrete, 3(2), 123-132. https://doi.org/10.1016/0262-5075(81)90006-3
  • Balaguru, P. N., & Shah, S. P. (1992). Fibre-reinforced cement composites. New York: Macgraw-Hill.
  • Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. https://doi.org/10.1016/j.conbuildmat.2013.12.073
  • Barr, B., Hoseinian, S. B., & Beygi, M. A. (2003). Shrinkage of concrete stored in natural environments. Cement and Concrete Composites, 25(1), 19-29. https://doi.org/10.1016/s0958-9465(01)00044-0
  • Bazant, Z. P., & Planas, J. (2019). Fracture and size effect in concrete and other quasibrittle materials. 1st Edition. CRC Press.
  • Bheel, N., Tafsirojjaman, T., Liu, Y., Awoyera, P., Kumar, A., & Keerio, M. A. (2021). Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings, 11(10), 454. https://doi.org/10.3390/buildings11100454
  • Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2016). Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262. https://doi.org/10.1016/j.conbuildmat.2016.09.035
  • Chakma, M. A., & Amin, R. (2016). Strength and Durability Properties of Concrete by using Jute and Polypropylene Fibers. BUET-ANWAR ISPAT 1st Bangladesh Civ. Eng. SUMMIT, Dhaka.
  • Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252-1260. https://doi.org/10.1021/ie300607r
  • Chandar, S. P., & Balaji, C. J. (2015). Experimental study on the mechanical properties of concrete mixed with jute fiber and steel fiber. Int Res J Eng Technol, 1, 77-82.
  • Chen, J., Yao, B. W., Li, C., & Shi, G. Q. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229. https://doi.org/10.1016/j.carbon.2013.07.055
  • Choi, S., Panov, V., Han, S., & Yun, K. K. (2023). Natural fiber-reinforced shotcrete mixture: Quantitative assessment of the impact of fiber on fresh and plastic shrinkage cracking properties. Construction and Building Materials, 366, 130032. https://doi.org/10.1016/j.conbuildmat.2022.130032
  • Dávila-Pompermayer, R., Lopez-Yepez, L. G., Valdez-Tamez, P., Juárez, C. A., & Durán-Herrera, A. (2020). Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cement and Concrete Composites, 112, 103686. https://doi.org/10.1016/j.cemconcomp.2020.103686
  • Faiq, L. S. (2018). Study of the mechanical properties of jute fiber reinforced cement composites. Engineering and Technology Journal, 36(12A), 1244-1248. https://doi.org/10.30684/etj.36.12a.5
  • Hasan, R., Sobuz, M. H. R., Akid, A. S. M., Awall, M. R., Houda, M., Saha, A., Meraz, M. M., Islam, M.S. & Sutan, N. M. (2023). Eco-friendly self-consolidating concrete production with reinforcing jute fiber. Journal of Building Engineering, 63, 105519. https://doi.org/10.1016/j.jobe.2022.105519
  • Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7, 303-317. https://doi.org/10.1007/s40069-013-0059-7
  • Islam, M. S., & Ahmed, S. J. (2018). Influence of jute fiber on concrete properties. Construction and Building Materials, 189, 768-776. https://doi.org/10.1016/j.conbuildmat.2018.09.048
  • Islam, M. S. (2021). Simplified shear-strength prediction models for steel-fibre-reinforced concrete beams. Proceedings of the institution of civil engineers-construction materials, 174(2), 88-100. https://doi.org/10.1680/jcoma.16.00073
  • Khan, M. B., Shafiq, N., Waqar, A., Radu, D., Cismaș, C., Imran, M., Almujibah, H., & Benjeddou, O. (2023). Effects of jute fiber on fresh and hardened characteristics of concrete with environmental assessment. Buildings, 13(7), 1691. https://doi.org/10.3390/buildings13071691
  • Juarez, C. A., Fajardo, G., Monroy, S., Duran-Herrera, A., Valdez, P., & Magniont, C. (2015). Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Construction and Building Materials, 91, 164-170. https://doi.org/10.1016/j.conbuildmat.2015.05.028
  • Kundu, S. P., Chakraborty, S., Roy, A., Adhikari, B., & Majumder, S. B. (2012). Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials, 37, 841-850. https://doi.org/10.1016/j.conbuildmat.2012.07.082
  • Li, Z., Lara, M. A. P., & Bolander, J. E. (2006). Restraining effects of fibers during non-uniform drying of cement composites. Cement and Concrete Research, 36(9), 1643-1652. https://doi.org/10.1016/j.cemconres.2006.04.001
  • Mansur, M. A., & Aziz, M. A. (1982). A study of jute fibre reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, 4(2), 75-82. https://doi.org/10.1016/0262-5075(82)90011-2
  • Mazaheripour, H., Barros, J. A., & Sena-Cruz, J. (2016). Tension-stiffening model for FRC reinforced by hybrid FRP and steel bars. Composites Part B: Engineering, 88, 162-181. https://doi.org/10.1016/j.compositesb.2015.10.042
  • Mehta P.K., Monteiro P.J.M. (2014). Concrete: microstructure, properties, and materials. 4th ed. Englewood Cliffs (NJ): McGraw- Hill.
  • Mello, E., Ribellato, C., & Mohamedelhassan, E. (2014). Improving concrete properties with fibers addition. International Journal of Civil and Environmental Engineering, 8(3), 249-254.
  • Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • Özen, S., Benlioğlu, A., Mardani, A., Altın, Y., & Bedeloğlu, A. (2024). Effect of graphene oxide-coated jute fiber on mechanical and durability properties of concrete mixtures. Construction and Building Materials, 448, 138225. https://doi.org/10.1016/j.conbuildmat.2024.138225
  • Rahman, S., & Azad, M. A. K. (2018). Investigation on mechanical strength of jute fiber reinforced concrete JFRC compared to plain concrete. Int. J. Sci. Eng. Res, 9, 560-564.
  • Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites, 27(5), 575-582. https://doi.org/10.1016/j.cemconcomp.2004.09.008
  • Raval, G., & Kansagra, M. (2017). Effects of Jute Fibers on Fiber-Reinforced concrete. International Journal of Innovative and Emerging Research in Engineering, 4(8), 7-12.
  • Sarker, F., Karim, N., Afroj, S., Koncherry, V., Novoselov, K. S., & Potluri, P. (2018). High-performance graphene-based natural fiber composites. ACS applied materials & interfaces, 10(40), 34502-34512. https://doi.org/10.1021/acsami.8b13018.s001
  • Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/10.1016/j.cscm.2021.e00724
  • Stancato, A. C., Burke, A. K., & Beraldo, A. L. (2005). Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cement and Concrete Composites, 27(5), 599-603. https://doi.org/10.1016/j.cemconcomp.2004.09.011
  • Sultana, N., Hossain, S. Z., Alam, M. S., Hashish, M. M. A., & Islam, M. S. (2020). An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials, 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216
  • Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158
  • Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A., & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and concrete composites, 27(5), 537-546. https://doi.org/10.1016/j.cemconcomp.2004.09.005
  • Wang, W., Liu, J., Agostini, F., Davy, C. A., Skoczylas, F., & Corvez, D. (2014). Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cement and Concrete Research, 55, 1-13. https://doi.org/10.1016/j.cemconres.2013.09.008
  • Zakaria, M., Ahmed, M., Hoque, M. M., & Hannan, A. (2015). Effect of jute yarn on the mechanical behavior of concrete composites. SpringerPlus, 4, 1-8. https://doi.org/10.1186/s40064-015-1504-7
  • Zakaria, M., Ahmed, M., Hoque, M. M., & Islam, S. (2017). Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability, 2(1), 1-10. https://doi.org/10.1186/s40689-016-0022-5
  • Zhang, J., & Li, V. C. (2001). Influences of fibers on drying shrinkage of fiber-reinforced cementitious composite. Journal of engineering mechanics, 127(1), 37-44. https://doi.org/10.1061/(asce)0733-9399(2001)127:1(37)
  • Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020a). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, 103512. https://doi.org/10.1016/j.cemconcomp.2020.103512
  • Zhang, T., Yin, Y., Gong, Y., & Wang, L. (2020b). Mechanical properties of jute fiber‐reinforced high‐strength concrete. Structural Concrete, 21(2), 703-712. https://doi.org/10.1002/suco.201900012
  • Zhou, X., Ghaffar, S. H., Dong, W., Oladiran, O., & Fan, M. (2013). Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Materials & Design, 49, 35-47. https://doi.org/10.1016/j.matdes.2013.01.029
  • Zia, A., & Ali, M. (2017). Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Construction and Building Materials, 155, 726-739. https://doi.org/10.1016/j.conbuildmat.2017.08.078

Effect of Jute Fibers Surface Improved with Graphene Oxide on Mechanical Properties and Drying Shrinkage Behavior of Mortar Mixtures

Yıl 2024, Cilt: 29 Sayı: 3, 843 - 862
https://doi.org/10.17482/uumfd.1571743

Öz

Fibers are generally added to mixtures to improve the mechanical properties of cementitious systems and to provide ductility. Fibers used in cementitious systems are divided into two groups: artificial and natural. Natural fibers are preferred due to their lower production costs, lower carbon emissions and fossil fuel consumption, biodegradability, lower density and ease of manufacturing, and lower environmental impacts. On the other hand, graphene-derived materials have been proven to have an improving effect on fiber-matrix mechanical and interface properties. Within the scope of this study, the effects of jute fibers subjected to surface improvement with graphene-oxide (GO) on the workability, compressive strength, flexural strength, water absorption and drying-shrinkage performances of mortar mixtures were investigated. Within the scope of the experimental study, in addition to the control mixture without fibers, GO coated and uncoated jute fibers with lengths of 0.5 and 1 cm were added to the mixture at 0.1, 0.3 and 0.5% of the total volume to prepare different fiber mortar mixtures. Compressive strength, flexural strength and water absorption tests were performed on 28-day mortar samples. In addition, the drying-shrinkage behaviors of the mortar samples up to 29 days were investigated. According to the experimental results, the need for water-reducing admixture increased in mixtures containing fibers to ensure target spreading. Applying GO coating to the fibers slightly reduced the need for additives compared to uncoated fibers. Adding 0.5 cm and 0.1% fiber to the mixtures increased the compressive and flexural strengths. Using more fibers negatively affected the flexural strengths, but did not significantly affect the compressive strengths. However, being GO coated slightly decreased the compressive strength. In general, GO coating provided a slight increase in strength compared to uncoated fibers. Water absorption rates were inversely proportional to compressive strength. Adding fibers reduced drying-shrinkage amounts. GO coated fibers were more effective in this case. However, GO coated fiber contents greater than 0.1% caused an increase in drying-shrinkage.

Destekleyen Kurum

Bursa Technical University Scientific Research Projects Coordinatorship (BAP)

Proje Numarası

211N036

Teşekkür

This study was supported by Bursa Technical University Scientific Research Projects Unit (BAP).

Kaynakça

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and building materials, 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ali, B., Hawreen, A., Kahla, N. B., Amir, M. T., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. https://doi.org/10.1016/j.conbuildmat.2022.128957
  • Alomayri, T., & Ali, B. (2023). Investigating the load-deflection behaviour and drying shrinkage resistance of HPC reinforced using different cellulose fibres. Journal of Building Engineering, 73, 106714. https://doi.org/10.1016/j.jobe.2023.106714
  • Aluko, O. G., Yatim, J. M., Kadir, M. A. A., & Yahya, K. (2020). A review of properties of bio-fibrous concrete exposed to elevated temperatures. Construction and Building Materials, 260, 119671. https://doi.org/10.1016/j.conbuildmat.2020.119671
  • Asprone, D., Durante, M., Prota, A., & Manfredi, G. (2011). Potential of structural pozzolanic matrix–hemp fiber grid composites. Construction and Building Materials, 25(6), 2867-2874. https://doi.org/10.1016/j.conbuildmat.2010.12.046
  • Aziz, M. A., Paramasivam, P., & Lee, S. L. (1981). Prospects for natural fibre reinforced concretes in construction. International Journal of Cement Composites and Lightweight Concrete, 3(2), 123-132. https://doi.org/10.1016/0262-5075(81)90006-3
  • Balaguru, P. N., & Shah, S. P. (1992). Fibre-reinforced cement composites. New York: Macgraw-Hill.
  • Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. https://doi.org/10.1016/j.conbuildmat.2013.12.073
  • Barr, B., Hoseinian, S. B., & Beygi, M. A. (2003). Shrinkage of concrete stored in natural environments. Cement and Concrete Composites, 25(1), 19-29. https://doi.org/10.1016/s0958-9465(01)00044-0
  • Bazant, Z. P., & Planas, J. (2019). Fracture and size effect in concrete and other quasibrittle materials. 1st Edition. CRC Press.
  • Bheel, N., Tafsirojjaman, T., Liu, Y., Awoyera, P., Kumar, A., & Keerio, M. A. (2021). Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings, 11(10), 454. https://doi.org/10.3390/buildings11100454
  • Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2016). Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262. https://doi.org/10.1016/j.conbuildmat.2016.09.035
  • Chakma, M. A., & Amin, R. (2016). Strength and Durability Properties of Concrete by using Jute and Polypropylene Fibers. BUET-ANWAR ISPAT 1st Bangladesh Civ. Eng. SUMMIT, Dhaka.
  • Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252-1260. https://doi.org/10.1021/ie300607r
  • Chandar, S. P., & Balaji, C. J. (2015). Experimental study on the mechanical properties of concrete mixed with jute fiber and steel fiber. Int Res J Eng Technol, 1, 77-82.
  • Chen, J., Yao, B. W., Li, C., & Shi, G. Q. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229. https://doi.org/10.1016/j.carbon.2013.07.055
  • Choi, S., Panov, V., Han, S., & Yun, K. K. (2023). Natural fiber-reinforced shotcrete mixture: Quantitative assessment of the impact of fiber on fresh and plastic shrinkage cracking properties. Construction and Building Materials, 366, 130032. https://doi.org/10.1016/j.conbuildmat.2022.130032
  • Dávila-Pompermayer, R., Lopez-Yepez, L. G., Valdez-Tamez, P., Juárez, C. A., & Durán-Herrera, A. (2020). Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cement and Concrete Composites, 112, 103686. https://doi.org/10.1016/j.cemconcomp.2020.103686
  • Faiq, L. S. (2018). Study of the mechanical properties of jute fiber reinforced cement composites. Engineering and Technology Journal, 36(12A), 1244-1248. https://doi.org/10.30684/etj.36.12a.5
  • Hasan, R., Sobuz, M. H. R., Akid, A. S. M., Awall, M. R., Houda, M., Saha, A., Meraz, M. M., Islam, M.S. & Sutan, N. M. (2023). Eco-friendly self-consolidating concrete production with reinforcing jute fiber. Journal of Building Engineering, 63, 105519. https://doi.org/10.1016/j.jobe.2022.105519
  • Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7, 303-317. https://doi.org/10.1007/s40069-013-0059-7
  • Islam, M. S., & Ahmed, S. J. (2018). Influence of jute fiber on concrete properties. Construction and Building Materials, 189, 768-776. https://doi.org/10.1016/j.conbuildmat.2018.09.048
  • Islam, M. S. (2021). Simplified shear-strength prediction models for steel-fibre-reinforced concrete beams. Proceedings of the institution of civil engineers-construction materials, 174(2), 88-100. https://doi.org/10.1680/jcoma.16.00073
  • Khan, M. B., Shafiq, N., Waqar, A., Radu, D., Cismaș, C., Imran, M., Almujibah, H., & Benjeddou, O. (2023). Effects of jute fiber on fresh and hardened characteristics of concrete with environmental assessment. Buildings, 13(7), 1691. https://doi.org/10.3390/buildings13071691
  • Juarez, C. A., Fajardo, G., Monroy, S., Duran-Herrera, A., Valdez, P., & Magniont, C. (2015). Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Construction and Building Materials, 91, 164-170. https://doi.org/10.1016/j.conbuildmat.2015.05.028
  • Kundu, S. P., Chakraborty, S., Roy, A., Adhikari, B., & Majumder, S. B. (2012). Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials, 37, 841-850. https://doi.org/10.1016/j.conbuildmat.2012.07.082
  • Li, Z., Lara, M. A. P., & Bolander, J. E. (2006). Restraining effects of fibers during non-uniform drying of cement composites. Cement and Concrete Research, 36(9), 1643-1652. https://doi.org/10.1016/j.cemconres.2006.04.001
  • Mansur, M. A., & Aziz, M. A. (1982). A study of jute fibre reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, 4(2), 75-82. https://doi.org/10.1016/0262-5075(82)90011-2
  • Mazaheripour, H., Barros, J. A., & Sena-Cruz, J. (2016). Tension-stiffening model for FRC reinforced by hybrid FRP and steel bars. Composites Part B: Engineering, 88, 162-181. https://doi.org/10.1016/j.compositesb.2015.10.042
  • Mehta P.K., Monteiro P.J.M. (2014). Concrete: microstructure, properties, and materials. 4th ed. Englewood Cliffs (NJ): McGraw- Hill.
  • Mello, E., Ribellato, C., & Mohamedelhassan, E. (2014). Improving concrete properties with fibers addition. International Journal of Civil and Environmental Engineering, 8(3), 249-254.
  • Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • Özen, S., Benlioğlu, A., Mardani, A., Altın, Y., & Bedeloğlu, A. (2024). Effect of graphene oxide-coated jute fiber on mechanical and durability properties of concrete mixtures. Construction and Building Materials, 448, 138225. https://doi.org/10.1016/j.conbuildmat.2024.138225
  • Rahman, S., & Azad, M. A. K. (2018). Investigation on mechanical strength of jute fiber reinforced concrete JFRC compared to plain concrete. Int. J. Sci. Eng. Res, 9, 560-564.
  • Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites, 27(5), 575-582. https://doi.org/10.1016/j.cemconcomp.2004.09.008
  • Raval, G., & Kansagra, M. (2017). Effects of Jute Fibers on Fiber-Reinforced concrete. International Journal of Innovative and Emerging Research in Engineering, 4(8), 7-12.
  • Sarker, F., Karim, N., Afroj, S., Koncherry, V., Novoselov, K. S., & Potluri, P. (2018). High-performance graphene-based natural fiber composites. ACS applied materials & interfaces, 10(40), 34502-34512. https://doi.org/10.1021/acsami.8b13018.s001
  • Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/10.1016/j.cscm.2021.e00724
  • Stancato, A. C., Burke, A. K., & Beraldo, A. L. (2005). Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cement and Concrete Composites, 27(5), 599-603. https://doi.org/10.1016/j.cemconcomp.2004.09.011
  • Sultana, N., Hossain, S. Z., Alam, M. S., Hashish, M. M. A., & Islam, M. S. (2020). An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials, 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216
  • Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158
  • Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A., & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and concrete composites, 27(5), 537-546. https://doi.org/10.1016/j.cemconcomp.2004.09.005
  • Wang, W., Liu, J., Agostini, F., Davy, C. A., Skoczylas, F., & Corvez, D. (2014). Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cement and Concrete Research, 55, 1-13. https://doi.org/10.1016/j.cemconres.2013.09.008
  • Zakaria, M., Ahmed, M., Hoque, M. M., & Hannan, A. (2015). Effect of jute yarn on the mechanical behavior of concrete composites. SpringerPlus, 4, 1-8. https://doi.org/10.1186/s40064-015-1504-7
  • Zakaria, M., Ahmed, M., Hoque, M. M., & Islam, S. (2017). Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability, 2(1), 1-10. https://doi.org/10.1186/s40689-016-0022-5
  • Zhang, J., & Li, V. C. (2001). Influences of fibers on drying shrinkage of fiber-reinforced cementitious composite. Journal of engineering mechanics, 127(1), 37-44. https://doi.org/10.1061/(asce)0733-9399(2001)127:1(37)
  • Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020a). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, 103512. https://doi.org/10.1016/j.cemconcomp.2020.103512
  • Zhang, T., Yin, Y., Gong, Y., & Wang, L. (2020b). Mechanical properties of jute fiber‐reinforced high‐strength concrete. Structural Concrete, 21(2), 703-712. https://doi.org/10.1002/suco.201900012
  • Zhou, X., Ghaffar, S. H., Dong, W., Oladiran, O., & Fan, M. (2013). Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Materials & Design, 49, 35-47. https://doi.org/10.1016/j.matdes.2013.01.029
  • Zia, A., & Ali, M. (2017). Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Construction and Building Materials, 155, 726-739. https://doi.org/10.1016/j.conbuildmat.2017.08.078
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Süleyman Özen 0000-0001-5522-427X

Proje Numarası 211N036
Erken Görünüm Tarihi 18 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 22 Ekim 2024
Kabul Tarihi 27 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 3

Kaynak Göster

APA Özen, S. (2024). GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 843-862. https://doi.org/10.17482/uumfd.1571743
AMA Özen S. GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ. UUJFE. Aralık 2024;29(3):843-862. doi:10.17482/uumfd.1571743
Chicago Özen, Süleyman. “GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 3 (Aralık 2024): 843-62. https://doi.org/10.17482/uumfd.1571743.
EndNote Özen S (01 Aralık 2024) GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 843–862.
IEEE S. Özen, “GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ”, UUJFE, c. 29, sy. 3, ss. 843–862, 2024, doi: 10.17482/uumfd.1571743.
ISNAD Özen, Süleyman. “GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (Aralık 2024), 843-862. https://doi.org/10.17482/uumfd.1571743.
JAMA Özen S. GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ. UUJFE. 2024;29:843–862.
MLA Özen, Süleyman. “GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 3, 2024, ss. 843-62, doi:10.17482/uumfd.1571743.
Vancouver Özen S. GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ. UUJFE. 2024;29(3):843-62.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr