Research Article
BibTex RIS Cite

INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ

Year 2025, Volume: 30 Issue: 1, 181 - 200, 28.04.2025
https://doi.org/10.17482/uumfd.1575363

Abstract

Lazer dolgu kaynağı sürecinde, kaplamanın geometrik özelliklerinin değerlendirilmesi öncelikli hedef olarak belirlenmiştir. Bu çalışma, tarama hızı, lazer gücü ve toz besleme hızı gibi üç temel proses parametresinin, AISI 1050 çelik alt tabaka üzerindeki Inconel 718 kaplamaların geometrik özellikleri üzerindeki etkilerini incelemeyi amaçlamaktadır. Bu amaçla, üç farklı lazer gücü, dört farklı tarama hızı ve dört farklı toz besleme hızında bir deney seti oluşturulmuş ve toplam 18 farklı deney numunesi üretilmiştir. Üretilen bu kaplamaların penetrasyon derinliği, kaplama yüksekliği, kaplama genişliği ve seyreltme oranı gibi çeşitli geometrik özellikleri analiz edilmiştir. Kaplama geometrisi üzerindeki proses parametrelerinin etkilerini kapsamlı bir şekilde değerlendirmek için varyans analizi (ANOVA) yapılmıştır. Analiz sonuçları, tarama hızının kaplama genişliği (%44) ve yüksekliği (%79) üzerinde en etkili faktör olduğunu ortaya koymaktadır. Lazer gücünün, alt tabakanın erime derinliği üzerinde %54 oranında etkili olduğu, toz akış hızının ise %35’lik bir etkiye sahip olduğu tespit edilmiştir. Matematiksel regresyon modeli sonuçları deneysel ölçümlerle karşılaştırıldığında, tüm geometrik özellikler için hata oranlarının %12’nin altında kaldığı görülmüş ve modelin deneysel tasarımda etkili bir hesaplama aracı olduğu doğrulanmıştır. Deneysel veriler, lazerle kaplanmış Inconel 718’in alt tabaka üzerindeki seyreltme oranının %9 ile %13 arasında değiştiğini göstermektedir. Bu bulgular, kaplamanın performans açısından tatmin edici bir sonuç verdiğini ortaya koymaktadır.

Supporting Institution

Ostim Teknik Üniversitesi

Project Number

BAP202316

References

  • Alizadeh-Sh, M., Marashi, S. P. H., Ranjbarnodeh, E., Shoja-Razavi, R. ve Oliveira, J. P. (2020). Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate. Optics & Laser Technology, 128, 106244. https://doi.org/10.1016/J.OPTLASTEC.2020.106244
  • Ari, A. (2024). Comprehensive analysis of morphology, microstructure, and mechanical characterization of parameters in the Inconel 718 laser cladding process on AISI 1050. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(22), 10772–10784. https://doi.org/10.1177/09544062241277732
  • Ari, A., Karagöz, T., Arslan, O. ve Bayram, A. (2023). AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. University Journal of The Faculty of Engineering, 28(2), 613–630. https://doi.org/10.17482/uumfd.1228584
  • Barekat, M., Shoja Razavi, R. ve Ghasemi, A. (2016). Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate. Optics and Laser Technology, 80, 145–152.
  • Bhaduri, A. K., Indira, R., Albert, S. K., Rao, B. P. S., Jain, S. C. ve Asokkumar, S. (2004). Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor. Journal of Nuclear Materials, 334(2–3), 109–114.
  • Bloemer, P. R. A., Pacheco, J. T., Cunha, A., Veiga, M. T., Filho, O. C. d. M., Meura, V. H. ve Teixeira, M. F. (2022). Laser cladding of Inconel 625 on AISI 316L: microstructural and mechanical evaluation of parameters estimated by empirical-statistical model. Journal of Materials Engineering and Performance, 31(1), 211–220. https://doi.org/10.1007/s11665-021-06147-8
  • Chen, C., Zeng, X., Wang, Q., Lian, G., Huang, X. ve Wang, Y. (2020). Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Optics and Laser Technology, 124, 105976. https://doi.org/10.1016/j.optlastec.2019.105976
  • Corbin, D. J., Nassar, A. R., Reutzel, E. W., Beese, A. M. ve Michaleris, P. (2018). Effect of substrate thickness and preheating on the distortion of laser deposited ti-6al-4v. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(6), 1–9. https://doi.org/10.1115/1.4038890
  • de Oliveira, U., Ocelík, V. ve De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2–3), 127–136. https://doi.org/10.1016/j.surfcoat.2004.06.029
  • Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H. ve Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics and Laser Technology, 97, 180–186. https://doi.org/10.1016/j.optlastec.2017.06.026
  • Ermergen, T. ve Taylan, F. (2024). Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Optics & Laser Technology, 168, 109832. https://doi.org/10.1016/J.OPTLASTEC.2023.109832
  • Goodarzi, D. M., Pekkarinen, J. ve Salminen, A. (2017). Analysis of laser cladding process parameter influence on the clad bead geometry. Welding in the World, 61(5), 883–891. https://doi.org/10.1007/s40194-017-0495-0
  • Herzog, D., Seyda, V., Wycisk, E. ve Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019
  • Huebner, J., Rutkowski, P., Kata, D. ve Kusiński, J. (2017). Microstructural and mechanical study of Inconel 625-Tungsten Carbide composite coatings obtained by powder laser cladding. Archives of Metallurgy and Materials, 62(2), 531–538. https://doi.org/10.1515/amm-2017-0078
  • Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S. ve Haghighat, S. (2022). Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507. https://doi.org/10.1016/J.OPTLASTEC.2022.108507
  • Jelvani, S., Shoja Razavi, R., Barekat, M. ve Dehnavi, M. (2020). Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Metals and Materials International, 26(5), 668–681. https://doi.org/10.1007/s12540-019-00355-7
  • Lee, E. M., Shin, G. Y., Yoon, H. S. ve Shim, D. S. (2017). Study of the effects of process parameters on deposited single track of M4 powder based direct energy deposition. Journal of Mechanical Science and Technology, 31(7), 3411–3418. https://doi.org/10.1007/s12206-017-0239-5
  • Muvvala, G., Mullick, S. ve Nath, A. K. (2020). Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surface and Coatings Technology, 399, 126100.
  • Nabhani, M., Razavi, R. S. ve Barekat, M. (2018). An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Optics and Laser Technology, 100, 265–271. https://doi.org/10.1016/j.optlastec.2017.10.015
  • Ning, J., Zhang, H. B., Chen, S. M., Zhang, L. J. ve Na, S. J. (2021). Intensive laser repair through additive manufacturing of high-strength martensitic stainless steel powders (I) –powder preparation, laser cladding and microstructures and properties of laser-cladded metals. Journal of Materials Research and Technology, 15, 5746–5761. https://doi.org/10.1016/J.JMRT.2021.10.109
  • Onwubolu, G. C., Davim, J. P., Oliveira, C. ve Cardoso, A. (2007). Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Optics and Laser Technology, 39(6), 1130–1134.
  • Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M. ve Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
  • Sciammarella, F. M. ve Najafabadi, B. S. (2018). Processing parameter doe for 316l using directed energy deposition. Journal of Manufacturing and Materials Processing, 2(3).
  • Seede, R., Mostafa, A., Brailovski, V., Jahazi, M. ve Medraj, M. (2018). Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases. Journal of Manufacturing and Materials Processing, 2(2). https://doi.org/10.3390/jmmp2020030
  • Shayanfar, P., Daneshmanesh, H. ve Janghorban, K. (2020). Parameters optimization for laser cladding of Inconel 625 on ASTM A592 steel. Journal of Materials Research and Technology, 9(4), 8258–8265. https://doi.org/10.1016/j.jmrt.2020.05.094
  • Shi, S., Xu, A., Fan, J. ve Wei, H. (2012). Study of cobalt-free, Fe-based alloy powder used for sealing surfaces of nuclear valves by laser cladding. Nuclear Engineering and Design, 245, 8–12. https://doi.org/10.1016/j.nucengdes.2012.01.015
  • Shi, X., Ma, S., Liu, C. ve Wu, Q. (2017). Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Optics and Laser Technology, 90, 71–79. https://doi.org/10.1016/j.optlastec.2016.11.002
  • Sun, Y. ve Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Optics and Lasers in Engineering, 50(7), 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018
  • Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E. ve Figueras, J. (2011). Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. International Journal of Machine Tools and Manufacture, 51(6), 465–470.
  • Thawari, N., Gullipalli, C., Katiyar, J. K. ve Gupta, T. V. K. (2021). Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties. Materials Today Communications, 28, 102604.
  • Twomey, P. J. ve Kroll, M. H. (2008). How to use linear regression and correlation in quantitative method comparison studies. International Journal of Clinical Practice, 62(4), 529–538. https://doi.org/10.1111/j.1742-1241.2008.01709.x
  • Wang, C., Zhou, J., Zhang, T., Meng, X., Li, P. ve Huang, S. (2022). Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Optics & Laser Technology, 149, 107843. https://doi.org/10.1016/J.OPTLASTEC.2021.107843
  • Wolff, S. J., ve diğ. (2019). Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 27, 540–551. https://doi.org/10.1016/j.addma.2019.03.019
  • Yilbas, B. S., Akhtar, S. S. ve Karatas, C. (2010). Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Optics and Lasers in Engineering, 48(7–8), 740–749.
  • Zhai, L. L., Ban, C. Y. ve Zhang, J. W. (2019). Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Optics & Laser Technology, 114, 81–88. https://doi.org/10.1016/J.OPTLASTEC.2019.01.017
  • Zhong, C., Liu, J., Zhao, T., Schopphoven, T., Fu, J., Gasser, A. ve Schleifenbaum, J. H. (2020). Laser metal deposition of Ti6Al4V—a brief review. Applied Sciences, 10(3), 764. https://doi.org/10.3390/APP10030764

Analysis of the Effect of Production Parameters on the Geometric Properties of Inconel 718 Laser Cladding

Year 2025, Volume: 30 Issue: 1, 181 - 200, 28.04.2025
https://doi.org/10.17482/uumfd.1575363

Abstract

In the laser cladding process, evaluating the geometric properties of the cladding has been identified as the primary objective. This study aims to investigate the effects of three fundamental process parameters—scanning speed, laser power, and powder feed rate—on the geometric properties of Inconel 718 coatings on an AISI 1050 steel substrate. For this purpose, an experimental set was created with three different laser powers, four different scanning speeds, and four different powder feed rates, resulting in a total of 18 different experimental samples. To comprehensively evaluate the effects of the process parameters on the coating geometry, analysis of variance (ANOVA) was conducted. The results of the analysis show that the scanning speed is the most influential factor on coating width (44%) and height (79%). It was found that the laser power has a 54% effect on the substrate melting depth, while the powder flow rate has a 35% effect. When comparing the results of the mathematical regression model with experimental measurements, the error rates for all geometric properties were found to be below 12%, confirming that the model is an effective computational tool in the experimental design. The experimental data show that the dilution rate of the laser-clad Inconel 718 on the substrate varies between 9% and 13%. These findings indicate that the coating provides a satisfactory result in terms of performance.

Project Number

BAP202316

References

  • Alizadeh-Sh, M., Marashi, S. P. H., Ranjbarnodeh, E., Shoja-Razavi, R. ve Oliveira, J. P. (2020). Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate. Optics & Laser Technology, 128, 106244. https://doi.org/10.1016/J.OPTLASTEC.2020.106244
  • Ari, A. (2024). Comprehensive analysis of morphology, microstructure, and mechanical characterization of parameters in the Inconel 718 laser cladding process on AISI 1050. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(22), 10772–10784. https://doi.org/10.1177/09544062241277732
  • Ari, A., Karagöz, T., Arslan, O. ve Bayram, A. (2023). AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. University Journal of The Faculty of Engineering, 28(2), 613–630. https://doi.org/10.17482/uumfd.1228584
  • Barekat, M., Shoja Razavi, R. ve Ghasemi, A. (2016). Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate. Optics and Laser Technology, 80, 145–152.
  • Bhaduri, A. K., Indira, R., Albert, S. K., Rao, B. P. S., Jain, S. C. ve Asokkumar, S. (2004). Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor. Journal of Nuclear Materials, 334(2–3), 109–114.
  • Bloemer, P. R. A., Pacheco, J. T., Cunha, A., Veiga, M. T., Filho, O. C. d. M., Meura, V. H. ve Teixeira, M. F. (2022). Laser cladding of Inconel 625 on AISI 316L: microstructural and mechanical evaluation of parameters estimated by empirical-statistical model. Journal of Materials Engineering and Performance, 31(1), 211–220. https://doi.org/10.1007/s11665-021-06147-8
  • Chen, C., Zeng, X., Wang, Q., Lian, G., Huang, X. ve Wang, Y. (2020). Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Optics and Laser Technology, 124, 105976. https://doi.org/10.1016/j.optlastec.2019.105976
  • Corbin, D. J., Nassar, A. R., Reutzel, E. W., Beese, A. M. ve Michaleris, P. (2018). Effect of substrate thickness and preheating on the distortion of laser deposited ti-6al-4v. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(6), 1–9. https://doi.org/10.1115/1.4038890
  • de Oliveira, U., Ocelík, V. ve De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2–3), 127–136. https://doi.org/10.1016/j.surfcoat.2004.06.029
  • Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H. ve Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics and Laser Technology, 97, 180–186. https://doi.org/10.1016/j.optlastec.2017.06.026
  • Ermergen, T. ve Taylan, F. (2024). Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Optics & Laser Technology, 168, 109832. https://doi.org/10.1016/J.OPTLASTEC.2023.109832
  • Goodarzi, D. M., Pekkarinen, J. ve Salminen, A. (2017). Analysis of laser cladding process parameter influence on the clad bead geometry. Welding in the World, 61(5), 883–891. https://doi.org/10.1007/s40194-017-0495-0
  • Herzog, D., Seyda, V., Wycisk, E. ve Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019
  • Huebner, J., Rutkowski, P., Kata, D. ve Kusiński, J. (2017). Microstructural and mechanical study of Inconel 625-Tungsten Carbide composite coatings obtained by powder laser cladding. Archives of Metallurgy and Materials, 62(2), 531–538. https://doi.org/10.1515/amm-2017-0078
  • Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S. ve Haghighat, S. (2022). Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507. https://doi.org/10.1016/J.OPTLASTEC.2022.108507
  • Jelvani, S., Shoja Razavi, R., Barekat, M. ve Dehnavi, M. (2020). Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Metals and Materials International, 26(5), 668–681. https://doi.org/10.1007/s12540-019-00355-7
  • Lee, E. M., Shin, G. Y., Yoon, H. S. ve Shim, D. S. (2017). Study of the effects of process parameters on deposited single track of M4 powder based direct energy deposition. Journal of Mechanical Science and Technology, 31(7), 3411–3418. https://doi.org/10.1007/s12206-017-0239-5
  • Muvvala, G., Mullick, S. ve Nath, A. K. (2020). Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surface and Coatings Technology, 399, 126100.
  • Nabhani, M., Razavi, R. S. ve Barekat, M. (2018). An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Optics and Laser Technology, 100, 265–271. https://doi.org/10.1016/j.optlastec.2017.10.015
  • Ning, J., Zhang, H. B., Chen, S. M., Zhang, L. J. ve Na, S. J. (2021). Intensive laser repair through additive manufacturing of high-strength martensitic stainless steel powders (I) –powder preparation, laser cladding and microstructures and properties of laser-cladded metals. Journal of Materials Research and Technology, 15, 5746–5761. https://doi.org/10.1016/J.JMRT.2021.10.109
  • Onwubolu, G. C., Davim, J. P., Oliveira, C. ve Cardoso, A. (2007). Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Optics and Laser Technology, 39(6), 1130–1134.
  • Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M. ve Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
  • Sciammarella, F. M. ve Najafabadi, B. S. (2018). Processing parameter doe for 316l using directed energy deposition. Journal of Manufacturing and Materials Processing, 2(3).
  • Seede, R., Mostafa, A., Brailovski, V., Jahazi, M. ve Medraj, M. (2018). Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases. Journal of Manufacturing and Materials Processing, 2(2). https://doi.org/10.3390/jmmp2020030
  • Shayanfar, P., Daneshmanesh, H. ve Janghorban, K. (2020). Parameters optimization for laser cladding of Inconel 625 on ASTM A592 steel. Journal of Materials Research and Technology, 9(4), 8258–8265. https://doi.org/10.1016/j.jmrt.2020.05.094
  • Shi, S., Xu, A., Fan, J. ve Wei, H. (2012). Study of cobalt-free, Fe-based alloy powder used for sealing surfaces of nuclear valves by laser cladding. Nuclear Engineering and Design, 245, 8–12. https://doi.org/10.1016/j.nucengdes.2012.01.015
  • Shi, X., Ma, S., Liu, C. ve Wu, Q. (2017). Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Optics and Laser Technology, 90, 71–79. https://doi.org/10.1016/j.optlastec.2016.11.002
  • Sun, Y. ve Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Optics and Lasers in Engineering, 50(7), 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018
  • Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E. ve Figueras, J. (2011). Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. International Journal of Machine Tools and Manufacture, 51(6), 465–470.
  • Thawari, N., Gullipalli, C., Katiyar, J. K. ve Gupta, T. V. K. (2021). Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties. Materials Today Communications, 28, 102604.
  • Twomey, P. J. ve Kroll, M. H. (2008). How to use linear regression and correlation in quantitative method comparison studies. International Journal of Clinical Practice, 62(4), 529–538. https://doi.org/10.1111/j.1742-1241.2008.01709.x
  • Wang, C., Zhou, J., Zhang, T., Meng, X., Li, P. ve Huang, S. (2022). Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Optics & Laser Technology, 149, 107843. https://doi.org/10.1016/J.OPTLASTEC.2021.107843
  • Wolff, S. J., ve diğ. (2019). Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 27, 540–551. https://doi.org/10.1016/j.addma.2019.03.019
  • Yilbas, B. S., Akhtar, S. S. ve Karatas, C. (2010). Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Optics and Lasers in Engineering, 48(7–8), 740–749.
  • Zhai, L. L., Ban, C. Y. ve Zhang, J. W. (2019). Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Optics & Laser Technology, 114, 81–88. https://doi.org/10.1016/J.OPTLASTEC.2019.01.017
  • Zhong, C., Liu, J., Zhao, T., Schopphoven, T., Fu, J., Gasser, A. ve Schleifenbaum, J. H. (2020). Laser metal deposition of Ti6Al4V—a brief review. Applied Sciences, 10(3), 764. https://doi.org/10.3390/APP10030764
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Ali Arı 0000-0003-2702-2982

Project Number BAP202316
Early Pub Date April 11, 2025
Publication Date April 28, 2025
Submission Date October 29, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Arı, A. (2025). INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 181-200. https://doi.org/10.17482/uumfd.1575363
AMA Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. April 2025;30(1):181-200. doi:10.17482/uumfd.1575363
Chicago Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 1 (April 2025): 181-200. https://doi.org/10.17482/uumfd.1575363.
EndNote Arı A (April 1, 2025) INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 181–200.
IEEE A. Arı, “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”, UUJFE, vol. 30, no. 1, pp. 181–200, 2025, doi: 10.17482/uumfd.1575363.
ISNAD Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (April2025), 181-200. https://doi.org/10.17482/uumfd.1575363.
JAMA Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. 2025;30:181–200.
MLA Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 1, 2025, pp. 181-00, doi:10.17482/uumfd.1575363.
Vancouver Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. 2025;30(1):181-200.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.