The estimation of battery state-of-charge (SOC) in electric or hybrid vehicle has vital importance in the designing process of battery management systems. The state-of-charge estimation is implemented using different modelling approaches, model-based estimators such as Kalman filtering and Luenberger observer and data-driven based modelling techniques like artificial neural network and machine learning methods. This study aimed to develop a battery state-of-charge estimation method and proposed a novel architecture for multiple battery back SOC estimation using an extended learning machine (ELM). The ELM approach is applied considering battery operating conditions using global vehicle driving profiles, New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. The performance of the proposed SOC estimation method is evaluated by using statistical criteria (RMSE, R2, MAPE). Consequently, the obtained results show that a data-driven ELM approach with a less complex structure can obtain better performance compared with other advanced estimator methods under different operating conditions.
Elektrikli veya hibrit araçlarda batarya şarj durumunun (SOC) tahmini, batarya yönetim sistemlerinin tasarım sürecinde hayati öneme sahiptir. Şarj durumu tahmini, farklı modelleme yaklaşımları, Kalman filtreleme ve Luenberger gözlemcisi gibi model tabanlı tahmin ediciler ve yapay sinir ağı ve makine öğrenimi yöntemleri gibi veri odaklı tabanlı modelleme teknikleri kullanılarak gerçekleştirilmektedir. Bu çalışma, bir batarya şarj durumu tahmin yöntemi geliştirmeyi amaçlamış ve genişletilmiş makine öğrenmesi (ELM) kullanarak çoklu batarya geri SOC tahmini için yeni bir mimari önermiştir. ELM yaklaşımı, küresel araç sürüş profilleri, Yeni Avrupa Sürüş Döngüsü ve Dünya Çapında Uyumlaştırılmış Hafif Araçlar Test Prosedürü kullanılarak ve akü çalışma koşulları dikkate alınarak uygulanmıştır. Önerilen SOC tahmin yönteminin performansı istatistiksel kriterler (RMSE, R2, MAPE) kullanılarak değerlendirilmiştir. Çalışma sonunda elde edilen sonuçlar, daha az karmaşık bir yapıya sahip veri güdümlü bir ELM yaklaşımının, farklı çalışma koşulları altında diğer gelişmiş tahmin yöntemlerine kıyasla daha iyi performans elde edebileceğini göstermektedir.
| Primary Language | English |
|---|---|
| Subjects | Automotive Engineering (Other) |
| Journal Section | Research Articles |
| Authors | |
| Early Pub Date | April 11, 2025 |
| Publication Date | April 28, 2025 |
| Submission Date | December 3, 2024 |
| Acceptance Date | February 5, 2025 |
| Published in Issue | Year 2025 Volume: 30 Issue: 1 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.