COMBINED USE OF PHASE CHANGE MATERIAL AND THERMAL INSULATION IN THE BUILDING ENVELOPE TO ENHANCE THE THERMAL COMFORT AND ENERGY-SAVING
Year 2025,
Volume: 30 Issue: 2, 439 - 458, 20.08.2025
Doğukan Kadir Yemenici
,
Kübra Ekiz Barış
Abstract
The combined use of phase change material (PCM) and thermal insulation (TI) is a crucial opportunity to enhance the thermal performance of buildings. This study aims to determine the optimum location and thickness of PCM and TI, as well as the melting temperature of PCM, in the exterior walls of an educational building located in five climate regions of Türkiye, and proposes a combination of PCM and TI techniques to reduce its cooling energy demand. Antalya, Istanbul, Ankara, Van, and Erzurum were selected to represent the various climatic regions of Türkiye. The simulation results revealed that the combined use of PCM and TI could effectively reduce the interior temperature (ITR) and provide better thermal comfort than incorporating PCM alone. The exterior wall type with PCM in the innermost layer and TI in the outermost layer was the most effective configuration for reducing the temperature fluctuations and cooling energy demand. The optimum melting temperature of the PCM was determined to be 27 ºC, ensuring a higher ITR and lower cooling energy consumption. The combined use of PCM (30 mm) and TI (10 mm), when properly selected according to local climatic conditions, can achieve considerable energy savings (9.12-19.95%).
References
-
Akeiber, H., Nejat, P., Majid, M.Z.A., Wahid, M.A., Jomehzadeh, F., Famileh, I.Z., Calautit, J.K., Hughes, B.R. and Zaki, S.A. (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renewable and Sustainable Energy Reviews, 60, 1470-1497. doi: 10.1016/j.rser.2016.03.036
-
Alam, M., Jamil, H., Sanjayan, J. and Wison, J. (2014) Energy saving potential of phase change materials in major Australian cities, Energy Building, 78, 192-201. doi: 10.1016/j.enbuild.2014.04.027
-
Al-Homoud, M.S. (2005) Performance characteristics and practical applications of common building thermal insulation materials, Building Environment, 40, 353–366. doi: 10.1016/j.buildenv.2004.05.013
-
Ali, S. (2014) Phase change materials integrated in building walls: A state of the art review, Renewable and Sustainable Energy Review, 31, 870–906. doi: 10.1016/j.rser.2013.12.042
-
Alizadeh, M. and Sadrameli, S.M. (2019) Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: experimental design and response surface approach, Energy Building, 188–189, 297–313. doi: 10.1016/j.enbuild.2019.02.020
-
Al-Yasiri, Q. And Szabo, M. (2023) Building envelope-combined phase change material and thermal insulation for energy-effective buildings during harsh summer: Simulation-based analysis, Energy for Sustainable Development, 72, 326-339. doi: 10.1016/j.esd.2023.01.003
-
Anayurt, M. (2021) Duvar ve Çatı Elemanlarında Faz Değiştiren Malzeme Kullanımına Dayalı Isıl Performansın Farklı İklim Koşullarına Bağlı Olarak Değerlendirilmesi, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.
-
Arıcı, M., Bilgin, F., Krajcik, M., Nizetic, S. and Karabay, H. (2022) Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material, Energy, 252. doi: 10.1016/j.energy.2022.124010
-
Arıcı, M., Bilgin, F., Nizetic, S. and Karabay, H. (2020) PCM integrated to external building walls: an optimization study on maximum activation of latent heat, Applied Thermal Engineering, 165. doi: 10.1016/j.applthermaleng.2019.114560
-
Arumugam, P. and Ramalingam, V. (2024) Thermal comfort enhancement of office buildings located under warm and humid climate through phase change material and insulation coupled with natural ventilation, Sustainable Energy Technologies and Assessments, 63. doi: 10.1016/j.seta.2024.103657
-
Arumugam, P., Ramalingam, V. And Vellaichamy, P. (2022) Optimal positioning of phase change material and insulation through numerical investigations to reduce cooling loads in office buildings. Journal of Energy Storage, 52. doi: 10.1016/j.est.2022.104946
-
Ascione, F., Bianco, N., De Masi, R.F., de’ Rossi, F. and Vanoli, G.P. (2014) Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season, Applied Energy, 113. doi: 10.1016/j.apenergy.2013.08.045
-
Beltran, R.D. and Martínez-Gomez, J. (2019) Analysis of phase change materials (PCM) for building wallboards based on the effect of environment, Journal of Building Engineering, 24. doi: 10.1016/j.jobe.2019.02.018
-
Chan, A. L. S. (2011) Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong, Energy and Buildings, 43, 2947–2955. doi: 10.1016/j.enbuild.2011.07.021
-
Chen, C., Guo, H., Liu, Y., Yue, H. and Wang, C. (2008) A new kind of phase change material (PCM) for energy-storing wallboard. Energy Building, 40, 882-890.
-
Coşkun, C., Oktay, Z. and Ertürk, M. (2010) Konutların Isıtma Sezonunda Seçilen İç Ortam Sıcaklık Parametresinin Enerji-Maliyet-Çevre Açısından Değerlendirilmesi ve Bir Uygulama Örneği, Tesisat Mühendisliği Dergisi, 116.
-
Coşkuner, A. (2018) Faz Değiştiren Malzemelerin Sıcak-Kuru ve Soğuk İklim Bölgelerindeki Yapı Kabuğu Enerji Performansının Karşılaştırılmalı Analizi, Yüksek lisans tezi, Mimar Sinan Güzel Sanatlar Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
-
Crawley, D.B., Winkelmann, F.C., Lawrie, L.K. and Pedersen, C.O. (2001) Energyplus: New Capabilities in a Whole-Building Energy Simulation Program, Building Simulation, 51-58. doi: 10.26868/25222708.2001.0051-58
-
Depe, D. (2017) Yenilikçi Isı Depolama Sistemi Faz Değiştiren Malzemelerin Bina Enerji Verimliliği Üzerindeki Etkisinin Analizine Yönelik Yaklaşım: Diyarbakır ve Erzurum Örnekleri, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
-
Evola, G., Marletta, L. and Sicurella, F. (2013) A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings, Building and Environment, 59, 517–27. doi: 10.1016/j.buildenv.2012.09.021
-
Garrido, P. L., Hurtado, P. I. and Nadrowski, B. (2001) Simple One-Dimensional Model of Heat Conduction which Obeys Fourier’s Law, Physical Review Letters, 86, 5486–5489. doi: 10.1103/PhysRevLett.86.5486
-
Heim, D. and Clarke, J.A. (2004) Numerical modelling and thermal simulation of PCM– gypsum composites with ESP-r, Energy Building, 36(8), 795–805. doi: 10.1016/j.enbuild.2004.01.004
-
Ilıcalı, E. (2024) Sürdürülebilir gelecek: İnşaat sektöründe karbon azaltımı, EkoYapı Dergisi.
-
International Energy Agency, (2015) Mobilizing Innovation to Accelerate Climate Action, OECD/IEA, Paris.
-
İlgar, G. and Terhan, M. (2024) Effect of thickness and melting temperature of phase change material integrated into exterior wall on building energy performance and CO2 emission reduction, Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 959-976. doi: 10.17341/gazimmfd.1218950
-
Jin, X., Medina, M.A. and Zhang, X. (2014) On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction, Energy, 73, 780-786. doi: 10.1016/j.energy.2014.06.079
-
Kalbasi, R. and Afrand, M. (2022) Which one is more effective to add to building envelope: Phase change, Journal of Cleaner Production, 367. doi: 10.1016/j.jclepro.2022.133032
-
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 15, 259 - 263.
-
Lagou, A., Kylili, A., Sadauskiene, J. and Fokaides, P. (2019) Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions, Construction and Building Materials, 225, 452-464. doi: 10.1016/j.conbuildmat.2019.07.199
-
Lei, J. and Yang, J. (2016) Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Applied Energy, 162, 207-217. doi: 10.1016/j.apenergy.2015.10.031
-
Meng, E., Yu, H., Zhan, G. and He, Y. (2013) Experimental and numerical study of the thermal performance of a new type of phase change material room, Energy Conversion and Management, 74, 386–394. doi: 10.1016/j.enconman.2013.06.004
-
Menyhart, K. and Krarti, M. (2017) Potential energy savings from deployment of dynamic insulation materials for US residential buildings, Building and Environment, 114, 203–218.
-
Özdemir, M. (2023) Yapı Bileşenlerinde Kullanılan Faz Değiştiren Malzemelerin Bina Isıtma ve Soğutma Yükü Üzerindeki Etkisi, Yüksek lisans tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
-
Qu, Y., Zhou, D., Xue, F. and Cui, L. (2021) Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer, Energy and Buildings, 241. doi: 10.1016/j.enbuild.2021.110966
-
Saffari, M., de Gracai, A., Ushak, S. and Cabeza, L.F. (2016) Economic impact of integrating PCM as passive system in buildings using Fanger comfort model, Energy and Buildings, 112, 159-172. doi: 10.1016/j.enbuild.2015.12.006
-
Saffari, M., de Gracia, A., Fernandez, C. and Cabeza, L.F. (2017) Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings, Applied Energy, 202, 420-434. doi: 10.1016/j.apenergy.2017.05.107
-
Salihi, M., Fiti, M.E., Harmen, Y., Chhiti, Y., Chebak, A., Alaoui, F.E.M., Achak, M., Bentiss, F. and Jama, C. (2022) Evaluation of global energy performance of building walls integrating PCM: Numerical study in semi-arid climate in Morocco, Case Studies in Construction Materials, 16. doi: 10.1016/j.cscm.2022.e00979
-
Silva, T., Vicente, R., Soares, N. and Ferreira, V. (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive con- struction solution, Energy Building, 49, 235-245. doi: 10.1016/j.enbuild.2012.02.010
-
Soares, N., Reinhart, C. F. and Hajiah, A. (2017) Simulation-based analysis of the use of PCM- wallboards to reduce cooling energy demand and peak-loads in low-rise residential heavyweight buildings in Kuwait, Building Thermal, Lighting, and Acoustics Modeling, 10(4), 481–495. doi: 10.1007/s12273-017-0347-2
-
T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, (2024) İl ve İlçeler İstatistikleri.
-
T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, (2023) İklim Değişikliği Azaltım Stratejisi ve Eylem Planı (2024-2030), Ankara, Türkiye.
-
T.C. Enerji ve Tabii Kaynaklar Bakanlığı, (2023) Enerji Verimliliği 2030 Stratejisi ve II. Ulusal Enerji Verimliliği Eylem Planı, Ankara.
-
TS 825, (2013) Thermal Insulation Requirements for Buildings, Türk Standartları Enstitüsü, Ankara.
-
Türkiye Güneşlenme Potansiyeli Atlası, (2010) T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü, Ankara.
-
U.S. Department of Energy, (2021) EnergyPlus™ Version 9.0.1 Documentation.
-
Yang, L., Yan, H. and Lok, C. (2014) Thermal comfort and building energy consumption implications–a review, Applied Energy, 115, 164–173. doi: 10.1016/j.apenergy.2013.10.062
-
Zhang, L., Zhang, Q., Jin, L., Cui, X. and Yang, X. (2024) Energy, economic and environmental (3E) analysis of residential building walls enhanced with phase change materials, Journal of Building Engineering, 84.
-
Zhu, N.A., Wu, M., Hu, P., Xu, L., Lei, F. and Li, S. (2018) Performance study on different location of double layers SSPCM wallboard in office building, Energy Building, 158, 23-31. doi: 10.1016/j.enbuild.2017.09.075
Isıl Konforu ve Enerji Tasarrufunu Artırmak İçin Bina Kabuğunda Faz Değiştiren Malzeme ve Isı Yalıtımının Birleşik Kullanımı
Year 2025,
Volume: 30 Issue: 2, 439 - 458, 20.08.2025
Doğukan Kadir Yemenici
,
Kübra Ekiz Barış
Abstract
Faz değiştiren malzeme (PCM) ve termal yalıtımın (TI) birlikte kullanımı, binaların termal performansını artırmak için önemli bir fırsattır. Bu çalışma, Türkiye'nin beş iklim bölgesinde yer alan bir eğitim binasının dış duvarlarında PCM ve TI'nin optimum yerleşim ve kalınlığını ve PCM'nin erime sıcaklığını belirlemeyi amaçlamış ve PCM ve TI'nin birlikte kullanım teknikleriyle soğutma enerji talebinin azaltılmasını hedeflemiştir. Antalya, İstanbul, Ankara, Van ve Erzurum, Türkiye'nin çeşitli iklim bölgelerini temsil etmek üzere seçilmiştir. Simülasyon sonuçları, PCM ve TI'nin birlikte kullanımının iç sıcaklık düşüşü (ITR) sağladığını ve yalnızca PCM kullanımına kıyasla daha iyi termal konfor sunduğunu göstermiştir. PCM'nin en içte ve TI'nin en dışta yer aldığı dış duvar tipi, sıcaklık dalgalanmalarını ve soğutma enerji talebini azaltmak için en etkili yapılandırma olmuştur. PCM'nin optimum erime sıcaklığı 27ºC olarak belirlenmiş, bu da daha fazla ITR ve daha az soğutma enerjisi tüketimi sağlamıştır. PCM (30 mm) ve TI (10 mm) birlikte kullanımı, yerel iklim koşullarına göre uygun şekilde seçildiğinde %9,12-19,95 arasında önemli enerji tasarrufu oranları elde edebilir.
References
-
Akeiber, H., Nejat, P., Majid, M.Z.A., Wahid, M.A., Jomehzadeh, F., Famileh, I.Z., Calautit, J.K., Hughes, B.R. and Zaki, S.A. (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renewable and Sustainable Energy Reviews, 60, 1470-1497. doi: 10.1016/j.rser.2016.03.036
-
Alam, M., Jamil, H., Sanjayan, J. and Wison, J. (2014) Energy saving potential of phase change materials in major Australian cities, Energy Building, 78, 192-201. doi: 10.1016/j.enbuild.2014.04.027
-
Al-Homoud, M.S. (2005) Performance characteristics and practical applications of common building thermal insulation materials, Building Environment, 40, 353–366. doi: 10.1016/j.buildenv.2004.05.013
-
Ali, S. (2014) Phase change materials integrated in building walls: A state of the art review, Renewable and Sustainable Energy Review, 31, 870–906. doi: 10.1016/j.rser.2013.12.042
-
Alizadeh, M. and Sadrameli, S.M. (2019) Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: experimental design and response surface approach, Energy Building, 188–189, 297–313. doi: 10.1016/j.enbuild.2019.02.020
-
Al-Yasiri, Q. And Szabo, M. (2023) Building envelope-combined phase change material and thermal insulation for energy-effective buildings during harsh summer: Simulation-based analysis, Energy for Sustainable Development, 72, 326-339. doi: 10.1016/j.esd.2023.01.003
-
Anayurt, M. (2021) Duvar ve Çatı Elemanlarında Faz Değiştiren Malzeme Kullanımına Dayalı Isıl Performansın Farklı İklim Koşullarına Bağlı Olarak Değerlendirilmesi, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.
-
Arıcı, M., Bilgin, F., Krajcik, M., Nizetic, S. and Karabay, H. (2022) Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material, Energy, 252. doi: 10.1016/j.energy.2022.124010
-
Arıcı, M., Bilgin, F., Nizetic, S. and Karabay, H. (2020) PCM integrated to external building walls: an optimization study on maximum activation of latent heat, Applied Thermal Engineering, 165. doi: 10.1016/j.applthermaleng.2019.114560
-
Arumugam, P. and Ramalingam, V. (2024) Thermal comfort enhancement of office buildings located under warm and humid climate through phase change material and insulation coupled with natural ventilation, Sustainable Energy Technologies and Assessments, 63. doi: 10.1016/j.seta.2024.103657
-
Arumugam, P., Ramalingam, V. And Vellaichamy, P. (2022) Optimal positioning of phase change material and insulation through numerical investigations to reduce cooling loads in office buildings. Journal of Energy Storage, 52. doi: 10.1016/j.est.2022.104946
-
Ascione, F., Bianco, N., De Masi, R.F., de’ Rossi, F. and Vanoli, G.P. (2014) Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season, Applied Energy, 113. doi: 10.1016/j.apenergy.2013.08.045
-
Beltran, R.D. and Martínez-Gomez, J. (2019) Analysis of phase change materials (PCM) for building wallboards based on the effect of environment, Journal of Building Engineering, 24. doi: 10.1016/j.jobe.2019.02.018
-
Chan, A. L. S. (2011) Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong, Energy and Buildings, 43, 2947–2955. doi: 10.1016/j.enbuild.2011.07.021
-
Chen, C., Guo, H., Liu, Y., Yue, H. and Wang, C. (2008) A new kind of phase change material (PCM) for energy-storing wallboard. Energy Building, 40, 882-890.
-
Coşkun, C., Oktay, Z. and Ertürk, M. (2010) Konutların Isıtma Sezonunda Seçilen İç Ortam Sıcaklık Parametresinin Enerji-Maliyet-Çevre Açısından Değerlendirilmesi ve Bir Uygulama Örneği, Tesisat Mühendisliği Dergisi, 116.
-
Coşkuner, A. (2018) Faz Değiştiren Malzemelerin Sıcak-Kuru ve Soğuk İklim Bölgelerindeki Yapı Kabuğu Enerji Performansının Karşılaştırılmalı Analizi, Yüksek lisans tezi, Mimar Sinan Güzel Sanatlar Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
-
Crawley, D.B., Winkelmann, F.C., Lawrie, L.K. and Pedersen, C.O. (2001) Energyplus: New Capabilities in a Whole-Building Energy Simulation Program, Building Simulation, 51-58. doi: 10.26868/25222708.2001.0051-58
-
Depe, D. (2017) Yenilikçi Isı Depolama Sistemi Faz Değiştiren Malzemelerin Bina Enerji Verimliliği Üzerindeki Etkisinin Analizine Yönelik Yaklaşım: Diyarbakır ve Erzurum Örnekleri, Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
-
Evola, G., Marletta, L. and Sicurella, F. (2013) A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings, Building and Environment, 59, 517–27. doi: 10.1016/j.buildenv.2012.09.021
-
Garrido, P. L., Hurtado, P. I. and Nadrowski, B. (2001) Simple One-Dimensional Model of Heat Conduction which Obeys Fourier’s Law, Physical Review Letters, 86, 5486–5489. doi: 10.1103/PhysRevLett.86.5486
-
Heim, D. and Clarke, J.A. (2004) Numerical modelling and thermal simulation of PCM– gypsum composites with ESP-r, Energy Building, 36(8), 795–805. doi: 10.1016/j.enbuild.2004.01.004
-
Ilıcalı, E. (2024) Sürdürülebilir gelecek: İnşaat sektöründe karbon azaltımı, EkoYapı Dergisi.
-
International Energy Agency, (2015) Mobilizing Innovation to Accelerate Climate Action, OECD/IEA, Paris.
-
İlgar, G. and Terhan, M. (2024) Effect of thickness and melting temperature of phase change material integrated into exterior wall on building energy performance and CO2 emission reduction, Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 959-976. doi: 10.17341/gazimmfd.1218950
-
Jin, X., Medina, M.A. and Zhang, X. (2014) On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction, Energy, 73, 780-786. doi: 10.1016/j.energy.2014.06.079
-
Kalbasi, R. and Afrand, M. (2022) Which one is more effective to add to building envelope: Phase change, Journal of Cleaner Production, 367. doi: 10.1016/j.jclepro.2022.133032
-
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 15, 259 - 263.
-
Lagou, A., Kylili, A., Sadauskiene, J. and Fokaides, P. (2019) Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions, Construction and Building Materials, 225, 452-464. doi: 10.1016/j.conbuildmat.2019.07.199
-
Lei, J. and Yang, J. (2016) Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Applied Energy, 162, 207-217. doi: 10.1016/j.apenergy.2015.10.031
-
Meng, E., Yu, H., Zhan, G. and He, Y. (2013) Experimental and numerical study of the thermal performance of a new type of phase change material room, Energy Conversion and Management, 74, 386–394. doi: 10.1016/j.enconman.2013.06.004
-
Menyhart, K. and Krarti, M. (2017) Potential energy savings from deployment of dynamic insulation materials for US residential buildings, Building and Environment, 114, 203–218.
-
Özdemir, M. (2023) Yapı Bileşenlerinde Kullanılan Faz Değiştiren Malzemelerin Bina Isıtma ve Soğutma Yükü Üzerindeki Etkisi, Yüksek lisans tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
-
Qu, Y., Zhou, D., Xue, F. and Cui, L. (2021) Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer, Energy and Buildings, 241. doi: 10.1016/j.enbuild.2021.110966
-
Saffari, M., de Gracai, A., Ushak, S. and Cabeza, L.F. (2016) Economic impact of integrating PCM as passive system in buildings using Fanger comfort model, Energy and Buildings, 112, 159-172. doi: 10.1016/j.enbuild.2015.12.006
-
Saffari, M., de Gracia, A., Fernandez, C. and Cabeza, L.F. (2017) Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings, Applied Energy, 202, 420-434. doi: 10.1016/j.apenergy.2017.05.107
-
Salihi, M., Fiti, M.E., Harmen, Y., Chhiti, Y., Chebak, A., Alaoui, F.E.M., Achak, M., Bentiss, F. and Jama, C. (2022) Evaluation of global energy performance of building walls integrating PCM: Numerical study in semi-arid climate in Morocco, Case Studies in Construction Materials, 16. doi: 10.1016/j.cscm.2022.e00979
-
Silva, T., Vicente, R., Soares, N. and Ferreira, V. (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive con- struction solution, Energy Building, 49, 235-245. doi: 10.1016/j.enbuild.2012.02.010
-
Soares, N., Reinhart, C. F. and Hajiah, A. (2017) Simulation-based analysis of the use of PCM- wallboards to reduce cooling energy demand and peak-loads in low-rise residential heavyweight buildings in Kuwait, Building Thermal, Lighting, and Acoustics Modeling, 10(4), 481–495. doi: 10.1007/s12273-017-0347-2
-
T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, (2024) İl ve İlçeler İstatistikleri.
-
T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, (2023) İklim Değişikliği Azaltım Stratejisi ve Eylem Planı (2024-2030), Ankara, Türkiye.
-
T.C. Enerji ve Tabii Kaynaklar Bakanlığı, (2023) Enerji Verimliliği 2030 Stratejisi ve II. Ulusal Enerji Verimliliği Eylem Planı, Ankara.
-
TS 825, (2013) Thermal Insulation Requirements for Buildings, Türk Standartları Enstitüsü, Ankara.
-
Türkiye Güneşlenme Potansiyeli Atlası, (2010) T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü, Ankara.
-
U.S. Department of Energy, (2021) EnergyPlus™ Version 9.0.1 Documentation.
-
Yang, L., Yan, H. and Lok, C. (2014) Thermal comfort and building energy consumption implications–a review, Applied Energy, 115, 164–173. doi: 10.1016/j.apenergy.2013.10.062
-
Zhang, L., Zhang, Q., Jin, L., Cui, X. and Yang, X. (2024) Energy, economic and environmental (3E) analysis of residential building walls enhanced with phase change materials, Journal of Building Engineering, 84.
-
Zhu, N.A., Wu, M., Hu, P., Xu, L., Lei, F. and Li, S. (2018) Performance study on different location of double layers SSPCM wallboard in office building, Energy Building, 158, 23-31. doi: 10.1016/j.enbuild.2017.09.075