Year 2017, Volume 1 , Issue 1, Pages 1 - 21 2017-12-29

A MATLAB TOOLBOX FOR INTERVAL VALUED NEUTROSOPHIC MATRICES FOR COMPUTER APPLICATIONS
A MATLAB TOOLBOX FOR INTERVAL VALUED NEUTROSOPHIC MATRICES FOR COMPUTER APPLICATIONS

Said BROUMİ [1] , Assia BAKALI [2] , Mohamed TALEA [3] , Florentin SMARANDACHE [4]


The concept of interval valued neutrosophic matrices is a generalized structure of fuzzy matrices, intuitionistic fuzzy matrices, interval fuzzy matrices and single valued neutrosophic matrices. Recently many studies have focused on interval valued neutrosophic matrices, In this paper, a variety of operations on interval valued neutrosophic matrices are presented using a new Matlab’ package. This package contains some essential functions which could help the researchers to do computations on interval valued neutrosophic matrices quickly.


The concept of interval valued neutrosophic matrices is a generalized structure of fuzzy matrices, intuitionistic fuzzy matrices, interval fuzzy matrices and single valued neutrosophic matrices. Recently many studies have focused on interval valued neutrosophic matrices, In this paper, a variety of operations on interval valued neutrosophic matrices are presented using a new Matlab’ package. This package contains some essential functions which could help the researchers to do computations on interval valued neutrosophic matrices quickly.

  • Anand, M.C.J. and Anand, M.E.,(2015) Eigenvaluesand eigen vectors for fuzzy matrix, International Journal of Engineering Research and General Science Volume 3, Issue 1, 2015, pp.878- 890
  • Bausys, R., & Zavadskas, E. K. (2015). Multıcrıterıa Decısıon Makıng Approach By Vıkor Under Interval Neutrosophıc Set Envıronment. Economic Computation & Economic Cybernetics Studies & Research, 49(4).
  • Broumi, S. , M. Talea, A. Bakali, F. Smarandache, (2016). Interval Valued Neutrosophic Graphs, Critical Review, XII, 2016. pp.5-33.
  • Broumi, S., A.Bakali, M.Talea, F.Smarandache, R.Verma,(2017) Computing Minimum Spanning Tree In Interval Valued Bipolar Neutrosophic Environment,International Journal of Modeling and Optimization, Vol. 7, No. 5, 2017, pp300-304.
  • Broumi, S., Le Hoang, F. Smarandache, A. Bakali, M.Talea, G.Selvachandran, Kishore Kumar.P.K, Computing Operational Matrices in Neutrosophic Environments: A Matlab toolbox, submitted
  • Broumi, S., Smarandache, F., Talea, M., & Bakali, A. (2016). Operations on interval valued neutrosophic graphs. Infinite Study. Graphs, chapter in book- New Trends in Neutrosophic Theory and Applications- FlorentinSmarandache and SurpatiPramanik (Editors), pp. 231-254. ISBN 978-1-59973-498-9
  • Broumi, S., Talea, M., Smarandache, F., & Bakali, A. (2016, December). Decision-making method based on the interval valued neutrosophic graph. In Future Technologies Conference (FTC) (pp. 44-50). IEEE.
  • C.Jaisankar, S.Arunvasan and R.Mani.,(2016) On Hessenberg of Triangular fuzzy matrices, IJSRET, V-5(12), 2016,pp.586-591
  • Deli, I. (2017). Interval-valued neutrosophic soft sets and its decision making. International Journal of Machine Learning and Cybernetics, 8(2), 665-676.
  • Dinagar, D. S., & Latha, K. (2013). Some types of type-2 triangular fuzzy matrices. International Journal of Pure and Applied Mathematics, 82(1), 21-32.
  • Garg, H. (2016). An improved score function for ranking neutrosophic sets and its application to decision-making process. International Journal for Uncertainty Quantification, 6(5).
  • Garg, H. (2017). Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Applied Intelligence, 1-15.
  • Huang, Y. H., Wei, G. W., & Wei, C. (2017). VIKOR method for interval neutrosophic multiple attribute group decision-making. Information, 8(4), 144. doi:10.3390/info8040144
  • Jaisankar, C., and Mani, R., (2017) Some Properties of Determinant of Trapezoidal Fuzzy Number Matrices, International Journal Of Modern Engineering Research, Vol. 7 ,Iss. 1 , 2017 ,pp70-78
  • Karaşan, A., & Kahraman, C. (2017). Interval-Valued Neutrosophic Extension of EDAS Method. In Advances in Fuzzy Logic and Technology 2017 (pp. 343-357). Springer, Cham. DOI 10.1007/978-3-319-66824-6_3
  • Karunambigai, M. G., and Kalaivani, O. K., (2016). Software development in intuitionistic Fuzzy Relational Calculus. International Journal of Scientific and research Publication, 6(7), 2016,pp.311-331.
  • Ma, Y. X., Wang, J. Q., Wang, J., & Wu, X. H. (2017). An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Computing and Applications, 28(9), 2745-2765. DOI 10.1007/s00521-016-2203-1.
  • Pal, A., & Pal, M. (2010, December). Some results on interval-valued fuzzy matrices. In The 2010 International Conference on E-Business Intelligence, Org. by Tsinghua University, Kunming, China, Atlantis Press (pp. 554-559).
  • Pal, M., Khan, S. K., & Shyamal, A. K. (2002). Intuitionistic fuzzy matrices. Notes on Intuitionistic fuzzy sets, 8(2), 51-62.
  • Peeva, K., & Kyosev, Y. (2004) Solving problems in intuitionistic fuzzy relational calculus with fuzzy relational calculus toolbox. In Eight International Conference on IFSs, Varna (pp. 37-43).
  • Pushpalatha, V.,(2017). α-Cuts Of Interval-Valued Fuzzy Matrices With Interval-Valued Fuzzy Rows And Columns, IOSR Journal of Mathematics, Volume 13, Issue 3 Ver. II ,2017, pp.55-62
  • Reddy, R., Reddy, D., & Krishnaiah, G. (2016). Lean Supplier Selection based on Hybrid MCGDM Approach using Interval Valued Neutrosophic Sets: A Case Study. International Journal of Innovative Research and Development, 5(4). pp.291-296.
  • Smarandache, F. (1998). Neutrosophy. neutrosophic probability, set, and logic, ProQuest information and learning. Ann Arbor, Michigan, USA, 105.
  • Sun, H. X., Yang, H. X., Wu, J. Z., & Ouyang, Y. (2015). Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. Journal of Intelligent & Fuzzy Systems, 28(6), 2443-2455.
  • Şahin, M., Ulucay V., and Menekşe, M., (2017). (α,β,ϒ) Interval Cut Set Of Interval Valued Neutrosophic Sets, International Conference on Mathematics and Mathematics Education (ICMME-2017), Harran University, Şanlıurfa, 11-13 May 2017
  • Şahin, R. (2017). Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria decision making. Neural Computing and Applications, 28(5), 1177-1187
  • Tian, Z. P., Zhang, H. Y., Wang, J., Wang, J. Q., & Chen, X. H. (2016). Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. International Journal of Systems Science, 47(15), 3598-3608.
  • Venkatesan, D. and Sriram, S. (2017). Multiplicative Operations of Intuitionistic Fuzzy Matrices, Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, pp.173-181
  • Venkatesan, D. and Sriram, S. (2017). Multiplicative Operations of Intuitionistic Fuzzy Matrices, Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, pp.173-181
  • Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Review of the Air Force Academy, (1), 10. pp. 410-413.
  • Ye, J. (2014a). Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. Journal of Intelligent & Fuzzy Systems, 26(1), 165-172.
  • Ye, J. (2014b). A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 26(5), 2459-2466.
  • Ye, J. (2015). Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. Journal of Intelligent & Fuzzy Systems, 28(3), 1307-1317.
  • Ye, J. (2016a). Interval neutrosophic multiple attribute decision-making method with credibility information. International Journal of Fuzzy Systems, 18(5), 914-923. DOI 10.1007/s40815-015-0122-4.
  • Ye, J. (2016b). Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. SpringerPlus, 5(1), 1488.
  • Zahariev, Z. (2009, November). Software package and API in MATLAB for working with fuzzy algebras. In AIP Conference Proceedings (Vol. 1184, No. 1, pp. 341-348). AIP.
  • Zhang, H. Y., Wang, J. Q., & Chen, X. H. (2014). Interval neutrosophic sets and their application in multicriteria decision making problems. The Scientific World Journal, 2014. doi:10.1155/2014/645953.
Subjects Engineering
Journal Section Articles
Authors

Author: Said BROUMİ (Primary Author)
Country: Morocco


Author: Assia BAKALI
Institution: Ecole Royale Navale, Boulevard Sour Jdid
Country: Morocco


Author: Mohamed TALEA
Institution: Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II
Country: Morocco


Author: Florentin SMARANDACHE
Institution: Department of Mathematics, University of New Mexico
Country: United States


Dates

Publication Date : December 29, 2017

APA BROUMİ, S , BAKALI, A , TALEA, M , SMARANDACHE, F . (2017). A MATLAB TOOLBOX FOR INTERVAL VALUED NEUTROSOPHIC MATRICES FOR COMPUTER APPLICATIONS. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi , 1 (1) , 1-21 . Retrieved from https://dergipark.org.tr/en/pub/uybisbbd/issue/33621/375864