Year 2018, Volume 2 , Issue 1, Pages 23 - 41 2018-06-29

BÜTÜNLEŞİK AFET YÖNETİM SİSTEMLERİNDE KARAR DESTEK SİSTEMİ GELİŞTİRİLMESİ: MOBİL UYGULAMA ÖRNEĞİ
DEVELOPMENT OF DECISION SUPPORT SYSTEMS FOR INTEGRATED DISASTER MANAGEMENT SYSTEMS: MOBILE APPLICATION CASE

İrfan MACİT [1]


Afet insanların günlük hayatlarını aniden kesintiye uğratan doğa veya insan (teknoloji) kaynaklı olaylardır. Afetlerin etkileri ortaya çıktığı oluşum kaynaklarına, ülkeye, sosyokültürel yapısına ve mücadele için aldıkları önlemlere göre değişiklik göstermektedir. Bütünleşik Afet Yönetimi (BAY) bilgi ve iletişim teknolojilerinin afet yönetiminde etkin kullanılması şeklinde tanımlanabilir. Karar Destek Sistemi (KDS), karmaşık problemleri bilgisayar yardımı ile önceden belirlenen kısıtlamalara göre çözen kural tabanlı sistemlerdir. Karar Destek Sistem tanımından da anlaşılacağı gibi bilgisayar sistemi üzerinde çalışmalı, zor bir problemi çözebilmeli, belirlenen kurallara göre karar verebilmeli ve sonuçları kesin olmalıdır. Bu çalışmada afetlerde kullanılması öngörülen veritabanı tasarlanmış, bu veritabanına afetleri sınıflandıran GLIDE kodları girilmiş, geliştirilen matematik modelin KDS tarafından kontrol edilerek en iyi çözümü bulacak bilgisayar kodları yazılmış, sonuçlar mobil ve sunucu tarafında kullanılacak şekilde sınıflandırılmıştır. Elde edilen matematik modelin sonuçları Android ekosistemine ait programlama ortamına aktarılmıştır. Bir afet sonrasında BAY sistemine ait lojistik işlerin afet yönetim sistemine uygun olarak önerilen KDS ile yürütülebileceği gösterilmiştir. 

Disaster is a natural or human (technology) event that suddenly breaks people's daily lives. The effects of disasters vary according to the sources of occurrence, the country, the socio-cultural structure and the precautions they take to struggle. Integrated Disaster Management (IDM) can be defined as the effective use of information and communication technologies in disaster management. Decision Support System (DSS) is a rule-based system that solves complex problems according to predetermined constraints with the help of a computer systems. Decision Support System (DSS) should be able to work on the computer system as it is understood in the definition of the system, be able to solve a difficult problem, decide according to determined rules, and the results should be definite. In this study, GLIDE codes that classify disasters were entered into this designed disaster database, the developed mathematical model was checked by DSS and the computer codes to find the best solution were written and the results were classified as mobile and server side. The results of the mathematical model obtained are transferred to the programming environment of the Android ecosystem. After a disaster it has been shown that the logistics works of the IDM system can be carried out with a DSS.


  • Afshar, A., Haghani, A. (2012). “Modeling Integrated Supply Chain Logistics In Real-Time Large-Scale Disaster Relief Operations”. Socio-Economic Planning Sciences 46(4), 327– 338.
  • Aktaş, E., Özaydın, Ö., Ulengin, F., Önsel, Ş., Ağaran, B. (2011). “İstanbul'da İtfaiye İstasyonu Yerlerinin Seçimi İçin Yeni Bir Model”. Endüstri Mühendisliği, 22(4), 2-12.
  • Altay, N., Green III, W. G. (2006). “OR/MS Research in Disaster Operations Management”. European Journal of Operational Research, 175(1), 475-493.
  • Balinski, M.L. (1965). “Integer Programming: Methods, Uses, Computations”. Management Science 1965(12):3 , 253-313
  • Barbarosoğlu, G., Arda, Y. (2004). “A Two-Stage Stochastic Programming Framework For Transportation Planning in Disaster Response”. Journal of Operarational Research Society (55), 43-53.
  • Bristow, D. N., Bristow, M. (2017). "Recovery Planning For Resilience in Integrated Disaster Risk Management". Proceeding, Ieee Sys Man Cybern, 2643-2648.
  • Carter, N. W. (2008). “Disaster Management A Disaster Manager’s Handbook”. Asian Development Bank. Manila.
  • Current, J., D. Schilling, D. (1990). “Analysis Of Errors Due To Demand Data Aggregation in The Set Covering And Maximal Covering Location-Problems”. Geographical Analysis (22), 116–126.
  • Catay, B. (2011). “İstanbul’da İtfaiye İstasyonu Yer Seçiminde Risk Faktörüne Dayalı Bir Çoklu Kapsama Yaklaşımı”. Endüstri Mühendisliği Dergisi (22), 33-44.
  • daCosta, S.R.A., Campos, V.B.G., de Mello Bandeira, R.A. (2012). “Supply Chains in Humanitarian Operations: Cases And Analysis”. Procedia-Social and Behavioral Sciences (54), 598-607.
  • Daskin, M. S. (1995). “Network and Discrete Location: Models, Algorithms, and Applications”. Wiley & Sons, New York.
  • Drezner, Z. (1992). “A Note On The Weber Location Problem”. Annals of Operations Research (40), 153–161.
  • EM-DAT, (2016). “The OFDA/CRED - International Disaster Database”. Université Catholique de Louvain Brussels, Belgium
  • Garey, M.R., Johnson, D.S. (1979). “Computers and Intractability: A Guide to the Theory of NP-Completeness”. W. H. Freeman & Co. New York, NY.
  • Green L., Colesar, P. (2004). “Improving Emergency Responsiveness with Management Science”. Mgagement Science (50)8, 1001-1014.
  • Glockner, G.D., Nemhauser. G.L. (2000). “A Dynamic Network Flow Problem With Uncertain Arc Capacities: Formulation And Problem Structure”. Operatinal Research (48), 233–242.
  • Hakimi, S. L. (1983). “On Locating New Facilities in A Competitive Environment”. European Journal of Operational Research (12), 29–35.
  • Hodgson, M. J., Rosing, K.E., Zhang J. (1996). “Locating Vehicle Inspection Stations To Protect A Transportation Network”. Geographical Analysis (28), 299–314.
  • Huang, K., Jiang. Y., Yuan, Y., Zhao,.L. (2015). “Modeling Multiple Humanitarian Objectives in Emergency Response To Large-Scale Disasters”. Transportation Research Part E: Logistics and Transportation Review (75), 1-17.
  • Iqbal, S., Usama, M., Faiq,. S., Hasan, K., L., O., (2018). “Statistical Model Checking of Relief Supply Location and Distribution in Natural Disaster Management”. International Journal of Disaster Risk Reduction (31), 1-23.
  • Gunes, A. E., Kovel, J. P. (2000). “Using GIS in Emergency Management Operations”. Journal Of Urban Planning And Development 126(3), 136-149.
  • Kovács, G., Spens, K. M. (2007). “Humanitarian logistics in disaster relief operations”. International Journal of Physical Distribution & Logistics Management 37(2), 99-114.
  • Luis, E., Dolinskaya, I. S., Smilowitz, K. R. (2012). Disaster relief routing: Integrating research and practice. Socio-economic planning sciences, 46(1), 88-97.
  • Macit, İ., Kalan, O. (2015). “Development of Logistics Planning Software for Mobile Devices in Earthquake Disaster Areas”. Çukurova Üniversitesi Bilimsel Araştırmalar Birimi BAP Projesi. Adana.
  • Marianov, V., Serra, D. (2002). “Location problems in the public sector”. Facility location: applications and theory (1), 119-150.
  • Meissner, A., Lukenbach, T., Risse, T., Kriste, T., Kircher, H. (2002). “Design Chalnges for Integrated Disaster Management Communicatio and Information Systems”. The First IEEE Workshop on Disaster Recovery Networks.
  • Nishikawa, M. S. (2003). “GLobal Unique Disaster IDEntifier Number (GLIDE): For Effective Disaster Information Sharing and Management”. International Conference on Total Disaster Risk Management (Vol. 2, p. 4).
  • Özdamar, L., Ekinci, E., Küçükyazici, B. (2004). “Emergency Logistics Planning in Natural Disasters”. Annals of Operations Research 129 (1), 217–245.
  • Pearce, L. (2003). “Disaster Management And Community Planning, And Public Participation: How To Achieve Sustainable Hazard Mitigation”. Natural hazards 28(2-3), 211-228.
  • Rawls, C.G., Turnquist, M.A. (2010). “Pre-Positioning Of Emergency Supplies For Disaster Response”. Transportation Research Part B: Methodological 44(4), 521–534.
  • Reed, P., Holdaway, K., Isensee, S., Buie, E., Fox, J., Williams, J., Lund, A. (1999). “User Interface Guidelines and Standards: Progress, Issues, and Prospects”, Interacting with Computers (12), 119-142.
  • Rauner, M. S., Niessner, H., Odd, S., Pope, A., Neville, K., O’Riordan, S., Tomic, K. (2018). “An advanced decision support system for European disaster management: the feature of the skills taxonomy”. Central European Journal of Operations Research, 26(2), 485-530.
  • ReliefWeb (2018). URL: http://www.adrc.asia/link/index.php, [Erişim 10.05.2018]
  • Rosing, K., ReVelle, C., Schilling D. (1999). “A Gamma Heuristic For The P-Median Problem”. European Journal of Operational Research (117), 522–532.
  • Schilling, D.C., ReVelle, J., Cohon and, D., Elzinga. (1980). “Some Models For Fire Protection Locational Decisions”. European Journal of Operational Research (5), 1 -7.
  • Sahebjamnia,N., Torabi, A., S., Afshin Mansouri, A. (2017). “A Hybrid Decision Support System For Managing Humanitarian Relief Chains”. Decision Supprt Systems (95), 12-26
  • Silbershatz, A., Korth, H., Sudarshan, S. (2002). “Database System Concept” . McGraw-Hill. NY. 4.th. Ed. 1043 pp.
  • SFDRR (2015). “Sedai Framework for Disaster Risk Reduction 2015-2030”. United Nations Office for Disaster Risk Redcution, Geneva. URL: http://www.unisdr.org.
  • Thomas, D. S. (2018). “The Role of Geographic Information Science & Technology in Disaster Management”. In Handbook of Disaster Research (pp. 311-330). Springer, Cham.
  • Turoff, M., Chumer, M., Van de Walle, B., Yao, X. (2004). “The Design Of A Dynamic Emergency Response Management Information System (DERMIS)”. JITTA: Journal of Information Technology Theory and Application 5(4), 1.
  • Toregas, C., Swain, R., ReVelle, C., Bergman, L., (1971). “The Location Of Emergency Service Facilities”. Operations Research (19), 1363–1373.
  • Ülgen, H. (1997). “İşletmelerde Organizasyon İlkeleri ve Uygulaması”. İ.Ü. İşletme Fakültesi, Yayın No:258. İstanbul.
  • Wallace, W. A., De Balogh, F. (1985). “Decision Support Systems For Disaster Management”. Public Administration Review, 134-146.
  • Yiğiter, R. G. (2005). “Kentsel Yerleşmeleri Afetlere Hazırlama Odaklı Kent Planlaması ve Zarar Azaltma”. (Ed.) Kadıoğlu, M., Özdamar, E., Afet Yönetiminin Temel İlkeleri, JICA Türkiye Ofisi, İstanbul.
  • ISO Country ALPHA-3 Code List Digits, URL: http://www.nationsonline.org/oneworld/country_code_list.htm
  • GLIDE Number Index, URL: http://glidenumber.net/glide/public/search/search.jsp?
  • Elliott, R., Powers, N., (Intellex), “One -Tier, Two-Tier, Three-Tier, A Server: Using Technology to Solve Business Problems”, URL:http://www.pacificelectric.com/PacificElec/Product/whtpap04.htm
Primary Language tr
Subjects Computer Science, Information System
Journal Section Articles
Authors

Orcid: 0000-0001-5966-5726
Author: İrfan MACİT (Primary Author)
Institution: ÇUKUROVA ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ
Country: Turkey


Dates

Publication Date : June 29, 2018

APA MACİT, İ . (2018). BÜTÜNLEŞİK AFET YÖNETİM SİSTEMLERİNDE KARAR DESTEK SİSTEMİ GELİŞTİRİLMESİ: MOBİL UYGULAMA ÖRNEĞİ. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi , 2 (1) , 23-41 . Retrieved from https://dergipark.org.tr/en/pub/uybisbbd/issue/37798/424008