YÜZ TANIMA UYGULAMALARINDA ÖZYÜZLER VE YAPAY SİNİR AĞLARININ KARŞILAŞTIRILMASI
Year 2018,
Volume: 2 Issue: 1, 51 - 59, 29.06.2018
Hakan Kekül
,
Hüdaverdi Bircan
,
Halil Arslan
Abstract
Bu çalışma ile yüz
tanımanın iki temel metodu olan görünüm ve öznitelik tabanlı yöntemlerin
modellenerek karşılaştırılması ve iki metodun yüz tanıma sistemlerinde farklı
alternatifler oluşturacak şekilde modellenmesi amaçlanmıştır. Bu amaçla görünüm tabanlı yöntem için
özyüzler ve öznitelik tabanlı yöntem için ise yapay sinir ağları
kullanılmıştır. Özyüzler ve yapay sinir ağları için farklı veri tabanları
kullanılarak sistemler eğitilmiş ve test verileri ile yöntemlerin sonuçları
karşılaştırılmıştır. Farklı durumlardaki tanıma performansları ve yüz tanıma
probleminin zorlukları karşısındaki başarımları değerlendirilmiştir. İki
sistemin farklı durumlar için birbirinin alternatifi olabileceği
belirlenmiştir.
References
- Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31.
- Benvenuto, F., & Marani, A. (2000). Neural networks for environmental problems: data quality control and air pollution nowcasting. Global NEST: The International Journal, 2(3), 281-292.
- Boznar, M., Lesjak, M., & Mlakar, P. (1993). A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment. Part B. Urban Atmosphere, 27(2), 221-230.
- Cheng, B., & Titterington, D. M. (1994). Neural networks: A review from a statistical perspective. Statistical science, 2-30.
- Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air & Waste Management Association, 47(6), 653-663.
- Goldstein, A. J., Harmon, L. D., & Lesk, A. B. (1971). Identification of human faces. Proceedings of the IEEE, 59(5), 748-760.
- Gökmen, M., Kurt, B., Kahraman, F., & Çapar, A. (2007). Çok Amaçlı Gürbüz Yüz Tanıma. İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü, Tübitak Projesi, Proje, (104E121).
- Haig, N. D. (1985). How faces differ—A new comparative technique. Perception, 14(5), 601-615.
- Jain, A. K., & Kumar, A. (2010). Biometrics of Next Generation: An Overview. proceedings Second Generation Biometrics’ Springer.
- Kaufman, G. J., & Breeding, K. J. (1976). The automatic recognition of human faces from profile silhouettes. IEEE Transactions on systems, Man, and Cybernetics, (2), 113-121.
- Jain, A. K., & Li, S. Z. (2011). Handbook of face recognition. New York: Springer.
- Martinez, A. M. (1998). The AR face database. CVC technical report.
- New report predicts Global Biometrics Market to reach US$16.47 Billion, Erişim Tarihi: 20 Aralık 2011, http://www.planetbiometrics.com/article-details/i/917/.
- Pentland, A., Moghaddam, B., & Starner, T. (1994). View-based and modular eigenspaces for face recognition. In CVPR (Vol. 94, pp. 84-91).
- Pike, J. (2007). Homeland Security: Biometrics. GlobalSecurity.org.
- Rhodes, G. (2013). Looking at faces: First-order and second-order features as determinants of facial appearance. Perception, 42(11), 1179-1199.
- Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Josa a, 4(3), 519-524.
- Terzopoulos, D., & Waters, K. (1990). Analysis of facial images using physical and anatomical models. In Computer Vision, 1990. Proceedings, Third International Conference on (pp. 727-732). IEEE.
- The Database of Faces, Erişim Tarihi: 21 Haziran 2017, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
- Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1), 71-86.
- Yüksek, A. G. (2007). Hava Kirliliği Tahmininde Çoklu Regresyon Analizi ve Yapay Sinir Ağları Yönteminin Karşılaştırılması. Doktora Tezi, Sivas Cumhuriyet Üniversitesi, Sosyal Bilimler Enstitüsü
COMPARISON OF EIGEN FACES AND ARTIFICIAL NEURAL NETWORKS IN FACE RECOGNITION
Year 2018,
Volume: 2 Issue: 1, 51 - 59, 29.06.2018
Hakan Kekül
,
Hüdaverdi Bircan
,
Halil Arslan
Abstract
In
this study, two basic methods of face recognition and comparison with the
operation of the feature-based methods and modeled in face recognition systems
two methods are intended to be designed so as to generate different alternatives.
For this purpose, eigenfaces for the view-based method and artificial neural
Networks for the feature-based method are used. The systems were trained using
different data bases for eigenfaces and artificial neural networks, and the
results of the test data and Networks were compared. The recognition
performances in different situations and their performance against the
difficulties of the face recognition problem have been evaluated. It has been
determined that the two systems may be alternatives for different situations.
References
- Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31.
- Benvenuto, F., & Marani, A. (2000). Neural networks for environmental problems: data quality control and air pollution nowcasting. Global NEST: The International Journal, 2(3), 281-292.
- Boznar, M., Lesjak, M., & Mlakar, P. (1993). A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment. Part B. Urban Atmosphere, 27(2), 221-230.
- Cheng, B., & Titterington, D. M. (1994). Neural networks: A review from a statistical perspective. Statistical science, 2-30.
- Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air & Waste Management Association, 47(6), 653-663.
- Goldstein, A. J., Harmon, L. D., & Lesk, A. B. (1971). Identification of human faces. Proceedings of the IEEE, 59(5), 748-760.
- Gökmen, M., Kurt, B., Kahraman, F., & Çapar, A. (2007). Çok Amaçlı Gürbüz Yüz Tanıma. İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü, Tübitak Projesi, Proje, (104E121).
- Haig, N. D. (1985). How faces differ—A new comparative technique. Perception, 14(5), 601-615.
- Jain, A. K., & Kumar, A. (2010). Biometrics of Next Generation: An Overview. proceedings Second Generation Biometrics’ Springer.
- Kaufman, G. J., & Breeding, K. J. (1976). The automatic recognition of human faces from profile silhouettes. IEEE Transactions on systems, Man, and Cybernetics, (2), 113-121.
- Jain, A. K., & Li, S. Z. (2011). Handbook of face recognition. New York: Springer.
- Martinez, A. M. (1998). The AR face database. CVC technical report.
- New report predicts Global Biometrics Market to reach US$16.47 Billion, Erişim Tarihi: 20 Aralık 2011, http://www.planetbiometrics.com/article-details/i/917/.
- Pentland, A., Moghaddam, B., & Starner, T. (1994). View-based and modular eigenspaces for face recognition. In CVPR (Vol. 94, pp. 84-91).
- Pike, J. (2007). Homeland Security: Biometrics. GlobalSecurity.org.
- Rhodes, G. (2013). Looking at faces: First-order and second-order features as determinants of facial appearance. Perception, 42(11), 1179-1199.
- Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Josa a, 4(3), 519-524.
- Terzopoulos, D., & Waters, K. (1990). Analysis of facial images using physical and anatomical models. In Computer Vision, 1990. Proceedings, Third International Conference on (pp. 727-732). IEEE.
- The Database of Faces, Erişim Tarihi: 21 Haziran 2017, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
- Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1), 71-86.
- Yüksek, A. G. (2007). Hava Kirliliği Tahmininde Çoklu Regresyon Analizi ve Yapay Sinir Ağları Yönteminin Karşılaştırılması. Doktora Tezi, Sivas Cumhuriyet Üniversitesi, Sosyal Bilimler Enstitüsü