Can Calcium Phosphate Be Used as a Model Material for Implant Stability Evaluation?
Year 2023,
Volume: 4 Issue: 1, 1 - 8, 07.08.2023
Levent Ciğerim
,
Zeynep Dilan Orhan
,
Nazlı Hilal Kahraman
Mohammad Alsmadı
,
Mohammad Bsaıleh
Abstract
The aim of this study was to
evaluate the use of calcium phosphate graft
material as an implant model. This prospective,
single-blind, model study was carried out in
Van Yüzüncü Yıl University Faculty of
Dentistry, Oral and Maxillofacial Surgery clinic
in February 2023. Calcium phosphate graft was
prepared as the model material and 2 molds in
Group 1 were left to set for 1 hour and 2 molds
in Group 2 for 12 hours. A total of 48 implant
sockets were created in 24 randomly generated
groups. The results were evaluated at the 95%
confidence interval and the significance level of
p<0.05. Drilling times of the implant sockets in
the 12-hour model group were found to be
statistically significantly higher than those in
the 1-hour model group (p<0.01). Implant
placement torques in the implant sockets in the
12-hour model group were found to be
statistically significantly higher than those in
the 1-hour model group (p<0.01). In this study,
it was revealed that calcium phosphate can be
used as a model material in in vitro implant
studies and in the evaluation of implant
stability.
References
- 1. Singh K, Rao J, Afsheen T, Tiwari B.
Survival rate of dental implant placement by
conventional or flapless surgery in controlled
type 2 diabetes mellitus patients: A systematic
review. Indian J Dent Res. 2019;30(4):600-
611.
- 2. Jivraj S, Chee W. Rationale for dental
implants. Br Dent J. 2006;200(12):661-665.
- 3. Setzer FC, Kim S. Comparison of Long-term
Survival of Implants and Endodontically
Treated Teeth. Journal of Dental Research.
2014;93(1):1926.
- 4. Salvi, G. E.,Monje, A., &Tomasi, C. Longterm
biological compli- cations of dental
implants placed either inpristineor in
augmentedsites: A systematic review and metaanalysis.
Clin Oral Implants Res.2018;29(Suppl
16):294–310.
- 5. Eriksson R, Albrektsson T: Temperature
thres holds for heat- induced bone tissue injury:
A vital-microscopic study in the rabbit. J
Prosthet Dent. 1983;50:101.
- 6. Ercoli C, Funkenbusch PD, Lee H-J, Moss
ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during
osteotomy preparation for dental implants: a
study of drill dura- bility. Int J Oral Maxillofac
Implants.2004;19:335–349.
- 7.Sharawy M, Misch CE, Weller N, Tehemar S.
Heat generation during implant drilling: The
significance of motor speed. J Oral Maxillofac
Surg 2002;60:1160‐1169.
- 8(12). Watanbe F, Tawada Y, Komatsu S, Hata
Y. Heatdistri- bution in bone during preparation
of implantsites: heat analysis by real-time
thermography. Int J Oral Maxillofac
Implants.1992;7:212–219
- 9. Möhlhenrich SC, Modabber A, Steiner T,
Mitchell DA, Hölzle F. Heat generation and
drill wear during dental implant site
preparation: systematic review. Br J Oral
Maxillofac Surg. 2015;53(8): 679–689.
- 10. Reingewirtz Y, Szmukler-Moncler S,
Senger B: Influence of different parameters on
bone heating and drilling in implantology. Clin
Oral Implant Res. 1997;8:189.
- 11. Yeniyol S, Jimbo R, Marin C, Tovar N,
Janal MN, Coelho PG. The effect of drilling
speed on early bone healing to oral implants.
Oral Surg Oral Med Oral Pathol Oral Radiol.
2013;116:550-555.
- 12. Iyer S, Weiss C, Mehta A. Effects of drill
speed on heat production and the rate and
quality of bone formation in dental implant
osteotomies, part I: relationship between drill
speed and heat production. Int J Prosthodont.
1997;10:411-414.
- 13.Gaspar J, Borrecho G, Oliveira P, Salvado F,
Martinsdos Santos J. Osteotomy at low-speed
drilling without irrigation versus high-speed
drilling with irrigation: an experimental study.
Acta Med Port. 2013;26:231-6.
- 14.Möhlhenrich SC, Kniha K, Heussen N,
Hölzle F, Modabber A. Effects on primary
stability of three different techniques for
implant site preparation in synthetic bone
models of different densities. Br J Oral
Maxillofac Surg. 2016;54(9):980-986.
- 15. Pesqueira AA, Goiato MC, Filho HG, et al.
Use of stres analysis methods to evaluate the
biomechanics of oral rehabilitation with
implants. J Oral Implantol. 2014;40(2):217-
228.
- 16. Khasnis N, Dhatrak P, Kurup A. Materials
Today: Proceedings. 2021;39:114–120.
- 17. Palissery V, Taylor M, Browne M. Fatigue
Characterization of a Polymerfoamtouse as a
cancellous bone analog material in the
assessment of orthopaedic devices. J. Mater.
Sci. Mater. Med. 2004;15:61-67.
- 18. Bicudo P, Reis J, Deus AM, Reis L, Vaz
MF. Performance evaluation of dental
implants: An experimental and numerical
simulation study. Theor. Appl. Fract. Mech.
2016;85:74-83.
- 19. Fu Q, Rahaman MN, Bal BS, Brown RF,
Day DE. Mechanicaland in vitro performance
of 13–93 bioactive glasss caffolds prepared by
a polymerfoamreplication technique. Acta
Biomater. 2008:4;1854-1864.
- 20. Tcacencu I, Rodrigues N, Alharbi N,
Benning M, Toumpaniari S, Mancuso E,
Marshall M, Bretcanu O, Birch M, McCaskie A,
Dalgarno K. Osseointegration of porous apatitewollastonite
and poly (lacticacid) composite
structures createdusing 3D printing techniques
Mater. Sci. Eng., C. 2018;90:1-7.
- 21. Nanci A. Ten Cate's Oral Histology:
Development, Structure, and Function. 8th
edition, St. Louis: Elsevier, 2013.
- 22. Karageorgiou V and Kaplan D. Porosity of
3D biomaterial scaffold sand osteogenesis.
Biomaterials. 2005;26.5474-5491.
- 23. Cooper DM, Matyas JR, Katzenberg MA
and Hallgrimsson B. Comparison of micro
computed tomographic and microradiographic
measurements of cortical bone porosity. Calcif.
TissueInt. 2004;74:437-447.
- 24. Chen QZ, Boccaccini AR, Zhang HB, Wang
DZ and Edirisinghe MJ. Improved mechanical
reliability of bone tissue engineering ( Zirconia)
scaffolds by electrospraying. J. Am. Ceram.
Soc. 2006;89:1534-1539.
- 25. Boccaccini A, Ma PX. Tissue Engineering
Using Ceramics and Polymers. Second edition,
Amsterdam: Elsevier, 2014.
- 26. Almela T, Brook I, Khoshroo K,
Rasoulianboroujeni M, Fahimipour F, Tahriri
M, Dashtimoghadam E, El-Awa A, Tayebi L,
Moharamzadeh K. Simulation of corticocancellous
bone structureby 3D printing of
bilayer calcium phosphate-based scaffolds.
Bioprinting. 2017;6:1-7.
İmplant Stabilitesi Değerlendirmesinde Model Materyali Olarak Kalsiyum Fosfat Kullanılabilir mi?
Year 2023,
Volume: 4 Issue: 1, 1 - 8, 07.08.2023
Levent Ciğerim
,
Zeynep Dilan Orhan
,
Nazlı Hilal Kahraman
Mohammad Alsmadı
,
Mohammad Bsaıleh
Abstract
Bu çalışmanın amacı kalsiyum fosfat
greft materyalinin implant modeli olarak
kullanımını değerlendirmekti. Bu prospektif,
tek kör, model çalışması Van Yüzüncü Yıl
Üniversitesi Diş Hekimliği Fakültesi Ağız Diş
ve Çene Cerrahisi kliniğinde Şubat 2023
tarihinde gerçekleştirildi. Kalsiyum fosfat greft
model materyali olarak hazırlandı ve Grup
1’deki 2 kalıp 1 saat ve Grup 2’deki 2 kalıp 12
saat sertleşmesi için bekletildi. Rastgele
oluşturulan gruplarda 24 adet toplamda 48
implant yuvası oluşturuldu. Sonuçlar % 95’lik
güven aralığında, anlamlılık p<0.05 düzeyinde
değerlendirildi. 12 saatlik model grubundaki
implant yuvalarının drilleme zamanları 1
saatlik model grubundakilerden istatistiksel
olarak anlamlı seviyede yüksek saptanmıştır
(p<0,01). 12 saatlik model grubundaki
implant yuvalarındaki implant yerleştirme
torkları 1 saatlik model grubundakilerden
istatistiksel olarak anlamlı seviyede yüksek
saptanmıştır (p<0,01). Bu çalışmada kalsiyum
fosfatın in vitro implant çalışmalarında,
implant stabilitesinin değerlendirilmesinde
model materyali olarak kullanılabileceği ortaya
koyuldu.
References
- 1. Singh K, Rao J, Afsheen T, Tiwari B.
Survival rate of dental implant placement by
conventional or flapless surgery in controlled
type 2 diabetes mellitus patients: A systematic
review. Indian J Dent Res. 2019;30(4):600-
611.
- 2. Jivraj S, Chee W. Rationale for dental
implants. Br Dent J. 2006;200(12):661-665.
- 3. Setzer FC, Kim S. Comparison of Long-term
Survival of Implants and Endodontically
Treated Teeth. Journal of Dental Research.
2014;93(1):1926.
- 4. Salvi, G. E.,Monje, A., &Tomasi, C. Longterm
biological compli- cations of dental
implants placed either inpristineor in
augmentedsites: A systematic review and metaanalysis.
Clin Oral Implants Res.2018;29(Suppl
16):294–310.
- 5. Eriksson R, Albrektsson T: Temperature
thres holds for heat- induced bone tissue injury:
A vital-microscopic study in the rabbit. J
Prosthet Dent. 1983;50:101.
- 6. Ercoli C, Funkenbusch PD, Lee H-J, Moss
ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during
osteotomy preparation for dental implants: a
study of drill dura- bility. Int J Oral Maxillofac
Implants.2004;19:335–349.
- 7.Sharawy M, Misch CE, Weller N, Tehemar S.
Heat generation during implant drilling: The
significance of motor speed. J Oral Maxillofac
Surg 2002;60:1160‐1169.
- 8(12). Watanbe F, Tawada Y, Komatsu S, Hata
Y. Heatdistri- bution in bone during preparation
of implantsites: heat analysis by real-time
thermography. Int J Oral Maxillofac
Implants.1992;7:212–219
- 9. Möhlhenrich SC, Modabber A, Steiner T,
Mitchell DA, Hölzle F. Heat generation and
drill wear during dental implant site
preparation: systematic review. Br J Oral
Maxillofac Surg. 2015;53(8): 679–689.
- 10. Reingewirtz Y, Szmukler-Moncler S,
Senger B: Influence of different parameters on
bone heating and drilling in implantology. Clin
Oral Implant Res. 1997;8:189.
- 11. Yeniyol S, Jimbo R, Marin C, Tovar N,
Janal MN, Coelho PG. The effect of drilling
speed on early bone healing to oral implants.
Oral Surg Oral Med Oral Pathol Oral Radiol.
2013;116:550-555.
- 12. Iyer S, Weiss C, Mehta A. Effects of drill
speed on heat production and the rate and
quality of bone formation in dental implant
osteotomies, part I: relationship between drill
speed and heat production. Int J Prosthodont.
1997;10:411-414.
- 13.Gaspar J, Borrecho G, Oliveira P, Salvado F,
Martinsdos Santos J. Osteotomy at low-speed
drilling without irrigation versus high-speed
drilling with irrigation: an experimental study.
Acta Med Port. 2013;26:231-6.
- 14.Möhlhenrich SC, Kniha K, Heussen N,
Hölzle F, Modabber A. Effects on primary
stability of three different techniques for
implant site preparation in synthetic bone
models of different densities. Br J Oral
Maxillofac Surg. 2016;54(9):980-986.
- 15. Pesqueira AA, Goiato MC, Filho HG, et al.
Use of stres analysis methods to evaluate the
biomechanics of oral rehabilitation with
implants. J Oral Implantol. 2014;40(2):217-
228.
- 16. Khasnis N, Dhatrak P, Kurup A. Materials
Today: Proceedings. 2021;39:114–120.
- 17. Palissery V, Taylor M, Browne M. Fatigue
Characterization of a Polymerfoamtouse as a
cancellous bone analog material in the
assessment of orthopaedic devices. J. Mater.
Sci. Mater. Med. 2004;15:61-67.
- 18. Bicudo P, Reis J, Deus AM, Reis L, Vaz
MF. Performance evaluation of dental
implants: An experimental and numerical
simulation study. Theor. Appl. Fract. Mech.
2016;85:74-83.
- 19. Fu Q, Rahaman MN, Bal BS, Brown RF,
Day DE. Mechanicaland in vitro performance
of 13–93 bioactive glasss caffolds prepared by
a polymerfoamreplication technique. Acta
Biomater. 2008:4;1854-1864.
- 20. Tcacencu I, Rodrigues N, Alharbi N,
Benning M, Toumpaniari S, Mancuso E,
Marshall M, Bretcanu O, Birch M, McCaskie A,
Dalgarno K. Osseointegration of porous apatitewollastonite
and poly (lacticacid) composite
structures createdusing 3D printing techniques
Mater. Sci. Eng., C. 2018;90:1-7.
- 21. Nanci A. Ten Cate's Oral Histology:
Development, Structure, and Function. 8th
edition, St. Louis: Elsevier, 2013.
- 22. Karageorgiou V and Kaplan D. Porosity of
3D biomaterial scaffold sand osteogenesis.
Biomaterials. 2005;26.5474-5491.
- 23. Cooper DM, Matyas JR, Katzenberg MA
and Hallgrimsson B. Comparison of micro
computed tomographic and microradiographic
measurements of cortical bone porosity. Calcif.
TissueInt. 2004;74:437-447.
- 24. Chen QZ, Boccaccini AR, Zhang HB, Wang
DZ and Edirisinghe MJ. Improved mechanical
reliability of bone tissue engineering ( Zirconia)
scaffolds by electrospraying. J. Am. Ceram.
Soc. 2006;89:1534-1539.
- 25. Boccaccini A, Ma PX. Tissue Engineering
Using Ceramics and Polymers. Second edition,
Amsterdam: Elsevier, 2014.
- 26. Almela T, Brook I, Khoshroo K,
Rasoulianboroujeni M, Fahimipour F, Tahriri
M, Dashtimoghadam E, El-Awa A, Tayebi L,
Moharamzadeh K. Simulation of corticocancellous
bone structureby 3D printing of
bilayer calcium phosphate-based scaffolds.
Bioprinting. 2017;6:1-7.