Research Article
BibTex RIS Cite

Can Calcium Phosphate Be Used as a Model Material for Implant Stability Evaluation?

Year 2023, Volume: 4 Issue: 1, 1 - 8, 07.08.2023

Abstract

The aim of this study was to
evaluate the use of calcium phosphate graft
material as an implant model. This prospective,
single-blind, model study was carried out in
Van Yüzüncü Yıl University Faculty of
Dentistry, Oral and Maxillofacial Surgery clinic
in February 2023. Calcium phosphate graft was
prepared as the model material and 2 molds in
Group 1 were left to set for 1 hour and 2 molds
in Group 2 for 12 hours. A total of 48 implant
sockets were created in 24 randomly generated
groups. The results were evaluated at the 95%
confidence interval and the significance level of
p<0.05. Drilling times of the implant sockets in
the 12-hour model group were found to be
statistically significantly higher than those in
the 1-hour model group (p<0.01). Implant
placement torques in the implant sockets in the
12-hour model group were found to be
statistically significantly higher than those in
the 1-hour model group (p<0.01). In this study,
it was revealed that calcium phosphate can be
used as a model material in in vitro implant
studies and in the evaluation of implant
stability.

References

  • 1. Singh K, Rao J, Afsheen T, Tiwari B. Survival rate of dental implant placement by conventional or flapless surgery in controlled type 2 diabetes mellitus patients: A systematic review. Indian J Dent Res. 2019;30(4):600- 611.
  • 2. Jivraj S, Chee W. Rationale for dental implants. Br Dent J. 2006;200(12):661-665.
  • 3. Setzer FC, Kim S. Comparison of Long-term Survival of Implants and Endodontically Treated Teeth. Journal of Dental Research. 2014;93(1):1926.
  • 4. Salvi, G. E.,Monje, A., &Tomasi, C. Longterm biological compli- cations of dental implants placed either inpristineor in augmentedsites: A systematic review and metaanalysis. Clin Oral Implants Res.2018;29(Suppl 16):294–310.
  • 5. Eriksson R, Albrektsson T: Temperature thres holds for heat- induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101.
  • 6. Ercoli C, Funkenbusch PD, Lee H-J, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill dura- bility. Int J Oral Maxillofac Implants.2004;19:335–349.
  • 7.Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: The significance of motor speed. J Oral Maxillofac Surg 2002;60:1160‐1169.
  • 8(12). Watanbe F, Tawada Y, Komatsu S, Hata Y. Heatdistri- bution in bone during preparation of implantsites: heat analysis by real-time thermography. Int J Oral Maxillofac Implants.1992;7:212–219
  • 9. Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53(8): 679–689.
  • 10. Reingewirtz Y, Szmukler-Moncler S, Senger B: Influence of different parameters on bone heating and drilling in implantology. Clin Oral Implant Res. 1997;8:189.
  • 11. Yeniyol S, Jimbo R, Marin C, Tovar N, Janal MN, Coelho PG. The effect of drilling speed on early bone healing to oral implants. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:550-555.
  • 12. Iyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies, part I: relationship between drill speed and heat production. Int J Prosthodont. 1997;10:411-414.
  • 13.Gaspar J, Borrecho G, Oliveira P, Salvado F, Martinsdos Santos J. Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study. Acta Med Port. 2013;26:231-6.
  • 14.Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg. 2016;54(9):980-986.
  • 15. Pesqueira AA, Goiato MC, Filho HG, et al. Use of stres analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol. 2014;40(2):217- 228.
  • 16. Khasnis N, Dhatrak P, Kurup A. Materials Today: Proceedings. 2021;39:114–120.
  • 17. Palissery V, Taylor M, Browne M. Fatigue Characterization of a Polymerfoamtouse as a cancellous bone analog material in the assessment of orthopaedic devices. J. Mater. Sci. Mater. Med. 2004;15:61-67.
  • 18. Bicudo P, Reis J, Deus AM, Reis L, Vaz MF. Performance evaluation of dental implants: An experimental and numerical simulation study. Theor. Appl. Fract. Mech. 2016;85:74-83.
  • 19. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanicaland in vitro performance of 13–93 bioactive glasss caffolds prepared by a polymerfoamreplication technique. Acta Biomater. 2008:4;1854-1864.
  • 20. Tcacencu I, Rodrigues N, Alharbi N, Benning M, Toumpaniari S, Mancuso E, Marshall M, Bretcanu O, Birch M, McCaskie A, Dalgarno K. Osseointegration of porous apatitewollastonite and poly (lacticacid) composite structures createdusing 3D printing techniques Mater. Sci. Eng., C. 2018;90:1-7.
  • 21. Nanci A. Ten Cate's Oral Histology: Development, Structure, and Function. 8th edition, St. Louis: Elsevier, 2013.
  • 22. Karageorgiou V and Kaplan D. Porosity of 3D biomaterial scaffold sand osteogenesis. Biomaterials. 2005;26.5474-5491.
  • 23. Cooper DM, Matyas JR, Katzenberg MA and Hallgrimsson B. Comparison of micro computed tomographic and microradiographic measurements of cortical bone porosity. Calcif. TissueInt. 2004;74:437-447.
  • 24. Chen QZ, Boccaccini AR, Zhang HB, Wang DZ and Edirisinghe MJ. Improved mechanical reliability of bone tissue engineering ( Zirconia) scaffolds by electrospraying. J. Am. Ceram. Soc. 2006;89:1534-1539.
  • 25. Boccaccini A, Ma PX. Tissue Engineering Using Ceramics and Polymers. Second edition, Amsterdam: Elsevier, 2014.
  • 26. Almela T, Brook I, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, El-Awa A, Tayebi L, Moharamzadeh K. Simulation of corticocancellous bone structureby 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017;6:1-7.

İmplant Stabilitesi Değerlendirmesinde Model Materyali Olarak Kalsiyum Fosfat Kullanılabilir mi?

Year 2023, Volume: 4 Issue: 1, 1 - 8, 07.08.2023

Abstract

Bu çalışmanın amacı kalsiyum fosfat
greft materyalinin implant modeli olarak
kullanımını değerlendirmekti. Bu prospektif,
tek kör, model çalışması Van Yüzüncü Yıl
Üniversitesi Diş Hekimliği Fakültesi Ağız Diş
ve Çene Cerrahisi kliniğinde Şubat 2023
tarihinde gerçekleştirildi. Kalsiyum fosfat greft
model materyali olarak hazırlandı ve Grup
1’deki 2 kalıp 1 saat ve Grup 2’deki 2 kalıp 12
saat sertleşmesi için bekletildi. Rastgele
oluşturulan gruplarda 24 adet toplamda 48
implant yuvası oluşturuldu. Sonuçlar % 95’lik
güven aralığında, anlamlılık p<0.05 düzeyinde
değerlendirildi. 12 saatlik model grubundaki
implant yuvalarının drilleme zamanları 1
saatlik model grubundakilerden istatistiksel
olarak anlamlı seviyede yüksek saptanmıştır
(p<0,01). 12 saatlik model grubundaki
implant yuvalarındaki implant yerleştirme
torkları 1 saatlik model grubundakilerden
istatistiksel olarak anlamlı seviyede yüksek
saptanmıştır (p<0,01). Bu çalışmada kalsiyum
fosfatın in vitro implant çalışmalarında,
implant stabilitesinin değerlendirilmesinde
model materyali olarak kullanılabileceği ortaya
koyuldu.

References

  • 1. Singh K, Rao J, Afsheen T, Tiwari B. Survival rate of dental implant placement by conventional or flapless surgery in controlled type 2 diabetes mellitus patients: A systematic review. Indian J Dent Res. 2019;30(4):600- 611.
  • 2. Jivraj S, Chee W. Rationale for dental implants. Br Dent J. 2006;200(12):661-665.
  • 3. Setzer FC, Kim S. Comparison of Long-term Survival of Implants and Endodontically Treated Teeth. Journal of Dental Research. 2014;93(1):1926.
  • 4. Salvi, G. E.,Monje, A., &Tomasi, C. Longterm biological compli- cations of dental implants placed either inpristineor in augmentedsites: A systematic review and metaanalysis. Clin Oral Implants Res.2018;29(Suppl 16):294–310.
  • 5. Eriksson R, Albrektsson T: Temperature thres holds for heat- induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101.
  • 6. Ercoli C, Funkenbusch PD, Lee H-J, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill dura- bility. Int J Oral Maxillofac Implants.2004;19:335–349.
  • 7.Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: The significance of motor speed. J Oral Maxillofac Surg 2002;60:1160‐1169.
  • 8(12). Watanbe F, Tawada Y, Komatsu S, Hata Y. Heatdistri- bution in bone during preparation of implantsites: heat analysis by real-time thermography. Int J Oral Maxillofac Implants.1992;7:212–219
  • 9. Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53(8): 679–689.
  • 10. Reingewirtz Y, Szmukler-Moncler S, Senger B: Influence of different parameters on bone heating and drilling in implantology. Clin Oral Implant Res. 1997;8:189.
  • 11. Yeniyol S, Jimbo R, Marin C, Tovar N, Janal MN, Coelho PG. The effect of drilling speed on early bone healing to oral implants. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:550-555.
  • 12. Iyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies, part I: relationship between drill speed and heat production. Int J Prosthodont. 1997;10:411-414.
  • 13.Gaspar J, Borrecho G, Oliveira P, Salvado F, Martinsdos Santos J. Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study. Acta Med Port. 2013;26:231-6.
  • 14.Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg. 2016;54(9):980-986.
  • 15. Pesqueira AA, Goiato MC, Filho HG, et al. Use of stres analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol. 2014;40(2):217- 228.
  • 16. Khasnis N, Dhatrak P, Kurup A. Materials Today: Proceedings. 2021;39:114–120.
  • 17. Palissery V, Taylor M, Browne M. Fatigue Characterization of a Polymerfoamtouse as a cancellous bone analog material in the assessment of orthopaedic devices. J. Mater. Sci. Mater. Med. 2004;15:61-67.
  • 18. Bicudo P, Reis J, Deus AM, Reis L, Vaz MF. Performance evaluation of dental implants: An experimental and numerical simulation study. Theor. Appl. Fract. Mech. 2016;85:74-83.
  • 19. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanicaland in vitro performance of 13–93 bioactive glasss caffolds prepared by a polymerfoamreplication technique. Acta Biomater. 2008:4;1854-1864.
  • 20. Tcacencu I, Rodrigues N, Alharbi N, Benning M, Toumpaniari S, Mancuso E, Marshall M, Bretcanu O, Birch M, McCaskie A, Dalgarno K. Osseointegration of porous apatitewollastonite and poly (lacticacid) composite structures createdusing 3D printing techniques Mater. Sci. Eng., C. 2018;90:1-7.
  • 21. Nanci A. Ten Cate's Oral Histology: Development, Structure, and Function. 8th edition, St. Louis: Elsevier, 2013.
  • 22. Karageorgiou V and Kaplan D. Porosity of 3D biomaterial scaffold sand osteogenesis. Biomaterials. 2005;26.5474-5491.
  • 23. Cooper DM, Matyas JR, Katzenberg MA and Hallgrimsson B. Comparison of micro computed tomographic and microradiographic measurements of cortical bone porosity. Calcif. TissueInt. 2004;74:437-447.
  • 24. Chen QZ, Boccaccini AR, Zhang HB, Wang DZ and Edirisinghe MJ. Improved mechanical reliability of bone tissue engineering ( Zirconia) scaffolds by electrospraying. J. Am. Ceram. Soc. 2006;89:1534-1539.
  • 25. Boccaccini A, Ma PX. Tissue Engineering Using Ceramics and Polymers. Second edition, Amsterdam: Elsevier, 2014.
  • 26. Almela T, Brook I, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, El-Awa A, Tayebi L, Moharamzadeh K. Simulation of corticocancellous bone structureby 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017;6:1-7.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Oral and Maxillofacial Surgery, Oral Implantology
Journal Section Research Article
Authors

Levent Ciğerim

Zeynep Dilan Orhan

Nazlı Hilal Kahraman This is me

Mohammad Alsmadı

Mohammad Bsaıleh

Publication Date August 7, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Ciğerim, L., Orhan, Z. D., Kahraman, N. H., Alsmadı, M., et al. (2023). İmplant Stabilitesi Değerlendirmesinde Model Materyali Olarak Kalsiyum Fosfat Kullanılabilir mi?. Van Diş Hekimliği Dergisi, 4(1), 1-8.