Review
BibTex RIS Cite

Current and Future Applications of Phytases in Poultry Industry: A Critical Review

Year 2018, , 65 - 74, 31.12.2018
https://doi.org/10.31797/vetbio.455687

Abstract

Phytases
are enzymes that initiate the removal of phosphate from phytate. This enzyme
has been widely utilized in animal feeding especially in the poultry industry
to enhance phosphorus intake and minimize environmental pollution. Phytases are
widely distributed in microbial, plants and animals. Supplementations of
phytase into the diets of poultry have great impact to the improvement of
poultry immune systems and increase bird weight. In addition to that, phytase
are able to improve both quantity and quality of eggs, egg mass and egg shell
quality. This review covers the classifications and distribution of phytases in
different biofactoris. In addition, it shed more light on the recent trends of
application and beneficial impact in poultry farming.

References

  • Abd-Alla, M.H. (1994). Use of organic phosphorus by Rhizobium leguminosarum biovarviceae phosphatases. Biol Fertil Soils, 18, 216-218. doi: 10.1007/BF00647669
  • Acamovic, T. (2001). Commercial application of enzyme technology for poultry production, World Poult Sci J, 57, 225-242. doi: 10.1079/WPS20010016
  • American Feed Industry Association (2018). AFIA Feed Industry Statistics. Arlington, VA, EEUU.
  • Ariff, R. M., Fitrianto, A., Manap, M. Y. A., Ideris, A., Kassim, A., Suhairin, A., Hussin, A. S. M. (2013). Cultivation conditions for phytase production from Recombinant Escherichia coli DH5α. Microbiol Insights, 6, MBI-S10402. doi: 10.4137/MBI.S10402
  • Bedford, M.R. & Schulze, H. (1998). Exogenous enzymes for pigs and poultry, Nutr Res Rev, 11, 91-114. doi: 10.1079/NRR19980007
  • Beshay, U., El Enshasy, H., Ismail, I.M.K, Moawad, H., Abdel Ghany, S. (2003). Glucanase production from genetically modified recombinant Escherichia coli: Effect of Growth Substrates and Development of a Culture Medium in Shake Flasks and Stirred Tank Bioreactor. Process Biochem, 39, 307-313.
  • Beshay, U., El Enshasy, H., Ismail, I.M.K., Moawad, H., Abd El-Ghany, S. (2011). Beta-Glucanase productivity improvement via cell immobilization of recombinant Escherichia coli cells in different matrices. Polish J Microbiol, 60, 133-138.
  • Bradbury, E.J., Wilkinson, S.J., Cronin, G.M., Thomson, P., Walk, C.L., & Cowieson, A.J. (2017). Evaluation of the effect of a highly soluble calcium source in broiler diets supplemented with phytase on performance, nutrient digestibility, foot ash, mobility and leg weakness. Anim Prod Sci, 57(10), 2016-2026. doi: 10.1071/AN16142
  • Broch, J., Nunes, R. V., Eyng, C., Pesti, G. M., de Souza, C., Sangalli, G. G., & Teixeira, L. (2018). Effect of dietary phytase superdosing on broiler performance. Anim Feed Sci Technol doi: 10.1016/j.anifeedsci.2018.06.001
  • Cabuk, M., Bozkurt, M., Kyrkpynar, & F., Ozkul, H. (2004). Effect of phytase supplementation of diets with different levels of phosphorus on performance and egg quality of laying hens in hot climatic conditions. S Afr J Anim Sci, 34(1), 13-17.doi: 10.4314/sajas.v34i1.3804
  • Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. (2007). Application of microbial phytase infish feed. Enzyme Microb Technol, 40, 497–507.doi: 10.1016/j.enzmictec.2007.01.007
  • Charoenrat, T., Antimanon, S., Kocharin, K., Tanapongpipat, S., Roongsawang, N. (2016). High cell density process for constitutive production of a recombinant phytase in thermotolerant methylotrophic yeast Ogataea thermomethanolica using table sugar as carbon source. Appl Biochem Biotechnol, 180(8), 1618-1634. doi: 10.1007/s12010-016-2191-8
  • Chen, C.C., Cheng, K.J., Ko, T.P., & Guo, R.T. (2015). Current progresses in phytase research: three‐dimensional structure and protein engineering. Chem Bio Eng Reviews, 2(2), 76-86. doi: 10.1002/cben.201400026
  • Chen, Y.P., Duan, W.G., Wang, L. L., Zhang, S. L., & Zhou, Y.M. (2013). Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. Int J Poult Sci 12(8), 441. doi: 10.3923/ijps.2013.441.444
  • Danicke, S., Jeroch, H., Bottcher, W., Bedford, M.R. & Ortwin, S. (1999). Effects of dietary fat type, pentosan level and xylanases on digestibility of fatty acids, liver lipids and vitamin E in broilers, Fettl Lipid, 101(3), 90-100. doi: 10.1002/(SICI)1521-4133(199903)101 :3<90::AID-LIPI90>3.0.CO;2-Q
  • Dersjant‐Li, Y., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric, 95(5), 878-896. doi: 10.1002/jsfa.6998
  • Dilger, R.N., Onyango, E.M., Sands, J.S., & Adeola, O. (2004). Evaluation of microbial phytase in broiler diets. Poult Sci, 83(6), 962-970. doi: 10.1093/ps/83.6.962
  • El Enshasy, H.A., Abdel Fattah, Y., Othman, N.Z. (2013). Amylases. In: Bioprocessing technologies in integrated biorefinery from production of biofuels, biochemicals, and biopolymers from biomass. Yang S-T, El Enshasy HA, Thongchul N (edts), First ed. John Wiley & Sons, USA 111-130.
  • El Enshasy, H.A., Othman, N.Z., Elsayed, E.A., Sarmidi, M.R., Wadaan, M.A., Aziz, R. (2016a). Functional enzymes for animal feed applications. In: The hand book of microbial bioresources. Gupta VK, Sharma GD, Touhy MG, Gaur R (edts), CABI Oxfordshire, UK. 296-312.
  • El Enshasy, H.A., Kandiyil, S.K., Malek, R., Othman, N.Z. (2016b). Xylanases: Sources, types and their applications. In: microbial enzymes in bioconversions of biomass. Gupta VK (ed). Springer International Publishing, Switzerland. 151-213.
  • Elsayed, E.A., Omar, H.G., Abdel Galil, S., El Enshasy, H.A. (2016). Optimization of fed-batch cultivation for extracellular α-amylase production by Bacillus amyloliquefaciens in submerged culture. J Sci Ind Res, 75, 480-486.
  • Gao, C.Q., Ji, C., Zhang, J.Y., Zhao, L.H., & Ma, Q.G. (2013). Effect of a novel plant phytase on performance, egg quality, apparent ileal nutrient digestibility and bone mineralization of laying hens fed corn–soybean diets. Anim Feed Sci Technol, 186,1-2, 101-105. doi: 10.1016/j.anifeedsci.2013.09.011
  • Ghosh, A., Mandal, G.P., Roy, A., & Patra, A.K. (2016). Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest Sci, 191, 80-85. doi: 10.1016/j.livsci.2016.07.014
  • Global Poultry Feed Market Report (2017). Analysis & Forecasts 2013-2021 - Emphasis on industrialization of livestock industry in Asia and South America
  • Greiner, R. (2007). Phytate-degrading enzymes: Regulation of synthesis in microorganisms and plants In: Turner, B.L. and Mullaney, E.J., Eds., Inositol Phosphates: Linking agriculture and the environment, CABI, Wallingford, UK, 78-96. doi: 10.1079/9781845931520.0078
  • Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technol Biotechnol, 44(2). 125-140.
  • Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and applications of phytases. Appl Microbiol Biotechnol, 68(5), 588-597. doi: 10.1007/s00253-005-0005-y
  • Hamdi, M., Perez, J. F., Létourneau-Montminy, M. P., Franco-Rosselló, R., Aligue, R., & Solà-Oriol, D. (2018). The effects of microbial phytases and dietary calcium and phosphorus levels on the productive performance and bone mineralization of broilers. Anim Feed Sci Technol doi: 10.1016/j.anifeedsci.2018.07.005
  • Haque, N., Hossain, A., Kumar, M., Kumar, V., & Tyagi, A.K. (2012). Phytase: their biochemistry, physiology and application in poultry. Int J Livest Res, 2(2), 30-41. doi: 10.5455/ijlr.20120407060451
  • Hu, H.L.,Wise, A., & Henderson, C. (1996). Hydrolysis of phytate and inositol tri-, tetra-, and penta-phosphates by the intestinal mucosa of the pig. Nutr Res, 16, 781-787. doi: 10.1016/0271-5317(96)00070-X
  • Humer, E., Schwarz, C., & Schedle, K. (2014). Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr 99(4),605-625, doi:10.1111/jpn.12258
  • Igbasan, F.A., Männer, K., Miksch, G., Borriss, R., Farouk, & A.,Simon, O. (2000). Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Anim Nutr, 53(4), 353-373. doi: 10.1080/17450390009381958
  • Jalal, M.A & Scheideler, S.E. (2001). Effect of supplementation of two different sources of phytase on egg production parameters in laying hens and nutrient digestibility. Poultry Sci, 80(10), 1463-1471.doi: 10.1093/ps/80.10.1463
  • Jorquera, M., Martinez, O., Maruyama, F., Marschner, P. & Mora de la Luz, M. (2008). Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ, 23, 182-191. doi: 10.1264/jsme2.23.182
  • Joseph, I., & Raj, R. P. (2007). Isolation and characterization of phytase producing Bacillus strains from mangrove ecosystem. J Marine Biol Ass India, 49,177–182.
  • Kandiyil, S., Abdul Malek, R., Aziz, R., El Enshasy, H.A. (2018). Development of an industrial feasible medium for enhanced production of extremely thermophilic recombinant Endo-1,4-β Xylanase by Escherichia coli. J Sci Ind Res, 77, 41-49.
  • Kim, J.H., Han, G.P., Shin, J.E., & Kil, D.Y. (2017). Effect of dietary calcium concentrations in phytase-containing diets on growth performance, bone mineralization, litter quality, and footpad dermatitis score in broiler chickens. Anim Feed Sci Technol, 229, 13-18. doi: 10.1016/j.anifeedsci.2017.04.008
  • Konietzny, U.G. (2002). Molecular and Catalytic Properties of Phytate-Degrading Enzymes (Phytases). Int J Food Sci Technol, 37, 791-812. doi: 10.1046/j.1365-2621.2002.00617.x
  • Kumar, A., Chanderman, A., Makolomakwa, M., Perumal, K, & Singh, S. (2016). Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit Rev Environ Sci Technol 46(6), 556-591 doi:10.1080/10643389.2015.1131562
  • Lan, J. C. W., Chang, C. K., Wu, H. S. (2014). Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale. J Biosci Bioeng. 118(3), 305-310. doi: 10.1016/j.jbiosc.2014.02.024.
  • Lalpanmawia, H., Elangovan, A.V., Sridhar, M., Shet, D., Ajith, S., Pal, D.T. (2014). Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim Feed Sci Technol, 192, 81-89. doi: 10.1016/j.anifeedsci.2014.03.004
  • Lee, S.A., Nagalakshmi, D., Raju, M.V., Rao, S.V.R., Bedford, M.R. (2017). Effect of phytase superdosing, myo-inositol and available phosphorus concentrations on performance and bone mineralisation in broilers. Anim Nutr, 3(3), 247-251. doi: 10.1016/j.aninu.2017.07.002
  • Lei, X.G., & Porres, J.M. (2003). Phytase enzymology, applications, and biotechnology. Biotechnol Lett, 25(21), 1787-1794. doi: 10.1038/nbt0793-811.
  • Li, W., Angel, R., Kim, S. W., Jiménez-Moreno, E., Proszkowiec-Weglarz, M., & Plumstead, P.W. (2018). Impacts of age and calcium on Phytase efficacy in broiler chickens. Anim Feed Sci Technol, 238, 9-17. doi: 10.1016/j.anifeedsci.2018.01.021
  • Liu, N., Liu, G. H., Li, F.D., Sands, J.S., Zhang, S., Zheng, A.J., Ru, Y.J. (2007). Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poultry Sci, 86(11), 2337-2342.doi: 10.3382/ps.2007-00079
  • Market Research Report (2017). Poultry Sector in South East Asia, Orissa International Pte. Ltd.
  • McCuaig, L., W. Davies, M.I., & Motzok, I. (1972). Regulation of intestinal alkaline phosphatase and phytase of chicks: effects of dietary magnesium, calcium, phosphorus and thyroactive casein. Poult Sci, 51, 526–530. doi:10.3382/ps.0510526
  • Mirzaei, M., Saffar, B., Shareghi, B. (2016). Cloning, codon optimization, and expression of Yersinia intermedia phytase gene in E. coli. Iran J Biotechnol, 14(2), 63. doi: 10.15171/ijb.1412
  • Morgan, N.K., Walk, C.L., Bedford, M.R., Scholey, D.V., Burton, E.J. (2016). Effect of feeding broilers diets differing in susceptible phytate content. Anim Nutr, 2(1), 33-39. doi:10.1016/j.aninu.2016.01.002
  • Moss, A.F., Chrystal, P.V., Dersjant-Li, Y., Selle, P.H., Liu, S.Y. (2018). Responses in digestibilities of macro-minerals, trace minerals and amino acids generated by exogenous phytase and xylanase in canola meal diets offered to broiler chickens. Anim Feed Sci Technol, 240, 22-30. doi: 10.1016/j.anifeedsci.2018.03.011
  • Moss, A.F., chrystal, P.V., Truong, H.H., Liu, S.Y., Selle, P H. (2017). Effects of phytase inclusions in diets containing ground wheat or 12.5% whole wheat (pre-and post-pellet) and phytase and protease additions, individually and in combination, to diets containing 12.5% pre-pellet whole wheat on the performance of broiler chickens. Anim Feed Sci Technol, 234, 139-150. Doi: 10.1016/j.anifeedsci.2017.09.007
  • Namkung, H., & Leeson, S. (1999). Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and amino acids in broiler chicks. Poult Sci, 78(9), 1317-1319. doi: 10.1093/ps/78.9.1317
  • Nissar, J., Ahad, T., Naik, H.R., & Hussain, S.Z. (2017). A review phytic acid: As antinutrient or nutraceutical. J Pharmacogn Phytochem, 6(6), 1554-1560.
  • Pariza, M.W. & Cook, M. (2010). Determining the safety of enzymes used in animal feed, Regul Toxicol Pharmacol, 56, 332-342. doi: 10.1016/j.yrtph.2009.10.005
  • Pakbaten, B., Heravi, R. M., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., Ziarat, M. M. (2018). Production of phytase enzyme by a bioengineered probiotic for degrading of phytate phosphorus in the digestive tract of poultry. Probiotics Antimicrob Proteins, 1-8. doi: 10.1007/s12602-018-9423-x
  • Pen, J., Verwoerd, T.C., van Paridon, P. A., Beudeker, R.F., van den Elzen, P., Geerse, K., & Hoekema, A. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat. Biotechnol., 11(7), 811.
  • Ravindran, V., Cabahug, S., Ravindran, G., & Bryden, W.L. (1999). Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult Sci, 78(5), 699-706. doi: 10.1093/ps/78.5.699
  • Ravindran, V., Cabahug, S., Ravindran, G., Selle, P.H., Bryden, W.L. (2000). Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br Poult Sci, 41(2), 193-200. doi: 10.1080/00071660050022263
  • Reddy, N.R., Sathe, S.K., & Salunkhe, D.K. (1982). Phytates in legumes and cereals. In Advances in food research (Vol. 28, pp. 1-92). Academic Press. doi: 10.1016/S0065-2628(08)60110-X
  • Richardson, A.E. & Hayes, J.E. (2000). Acid Phosphomonoesterase and Phytase Activities of Wheat (Triticum aestivum L.) Roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ, 23, 397-405. doi:10.1046/j.1365-3040.2000.00557.x
  • Richardson, A.E., Hadobas, P.A. & Hayes, J.E. (2001). Extracellular Secretion of Aspergillus Phytase from Arabidopsis Roots Enables Plants to Obtain Phosphorus from Phytate. Plant J, 25, 641-649. doi: 10.1046/j.1365-313x.2001.00998.x
  • Roofchaei, A., Rezaeipour, V., Vatandour, S., & Zaefarian, F. (2017). Influence of dietary carbohydrases, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed a wheat-based diet. Anim Nutr. doi: 10.1016/j.aninu.2017.12.001
  • Roy, M. P., Mazumdar, D., Dutta, S., Saha, S. P.,Ghosh, S. (2016). Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli. PloS one, 11(1), e0145745. Doi: 10.1371/journal.pone.0145745
  • Sa, K., Hr, C., & Ys, B. (2013). The effect of phytase enzyme on the performance of broiler flock (A-Review). Poultry Sci, 1(2), 117-125.doi: 10.22069/PSJ.2013.1478
  • Sabir, F., Tayyab, M., Muneer, B., Hashmi, A. S., Awan, A. R., Rashid, N.,Firyal, S. (2017). Characterization of recombinant thermostable phytase from thermotoga naphthophila: A step for the fulfilment of domestic requirement of phytase in Pakistan. Pak J Zool, 49(6). doi: 10.17582/journal.pjz/2017.49.6.1945.1951
  • Sasirekha, B., Bedashree, T., & Champa, K. (2012). Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. Euro J Exp Bio, 2,95–104.
  • Scholey, D.V., Morgan, N.K., Riemensperger, A., Hardy, R., & Burton, E.J (2018). Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult Sci, 97(7), 2435-2440. doi: 10.3382/ps/pey088Selle, P.H. & Ravindran, V. (2007). Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol, 135,1-41. doi: 10.1016/j.anifeedsci.2006.06.010
  • Silversides, F. G., & Hruby, M. (2009). Feed formulation using phytase in laying hen diets. J Appl Poult Res, 18(1), 15-22. doi: 10.3382/japr.2008-00035
  • Silversides, F.G. & Bedford, M.R. (1999). Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets, Poult Sci, 78,1184-1190. doi:10.1093/ps/78.8.1184
  • Singh, P., Kumar, V. & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol, 2014, Article ID: 426483. doi: 10.1155/2014/426483
  • Sugiura, S.H., Gabaudan, J., Dong, F. M., & Hardy, R.W. (2001). Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal‐based diets. Aquac Res, 32(7), 583-592. doi:10.1046/j.1365-2109.2001.00581.x
  • Tamim, N. M.; Angel, R.; Christman, M. (2004). Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult Scie, 83, 1358–1367 doi: 10.1093/ps/83.8.1358
  • Tai, H. M., Yin, L. J., Chen, W. C., Jiang, S. T. (2013). Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties. J Agric Food Chem, 61(25), 6007-6015. doi: 10.1021/jf401853b
  • Um, J. S., & Paik, I. K. (1999). Effects of microbial phytase supplementation on egg production, eggshell quality, and mineral retention of laying hens fed different levels of phosphorus. Poult Sci, 78(1), 75-79. doi: 10.1093/ps/78.1.75
  • Unno, Y., Okubo, K., Wasaki, J., Shinano, T. & Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. Environ Microbiol, 7, 396-404. doi: 10.1111/j.1462-2920.2004.00701.x
  • Vieira, B.S., Silva, F.G., Oliveira, C.F.S., Correa, A.B., Junior, J.C., Correa, G.S.S. (2017). Does citric acid improve performance and bone mineralization of broilers when combined with phytase? A systematic review and meta-analysis. Anim Feed Sci Technol, 232, 21-30. doi: 10.1016/j.anifeedsci.2017.07.016
  • Vijayaraghavan, P., Primiya, R.R., & Vincent, S.G.P. (2013). Thermostable alkaline phytase from Alcaligenes sp. in improving bioavailability of phosphorus in animal feed. In vitro analysis. ISRN Biotechnology, 1-6. doi; 10.5402/2013/394305
  • Viveros, A., Brenes, A., Arija, I., & Centeno, C. (2002). Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult Sci, 81(8), 1172-1183. doi: 10.1093/ps/81.8.1172
  • Yao, M. Z., Zhang, Y. H., Lu, W. L., Hu, M. Q., Wang, W., & Liang, A. H. (2012). Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol, 112(1), 1-14. doi; 10.1111/j.1365-2672.2011.05181.x
  • Yin, Q. Q., Zheng, Q.H., & Kang, X.T. (2007). Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim Feed Sci Technol, 132, 341-350. doi: 10.1016/j.anifeedsci.2006.03.016
  • Yoon, S.J., Min, H.K., Cho, K.K., Kim, J.W., Lee, S.C. & Jung, Y.H. (1996). Isolation and Identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol, 18, 449-454. doi: 10.1016/0141-0229(95)00131-X
  • Zhamuer, M. (2013). The effect of phytase supplementation on broiler and interaction between phytase and intermittent feeding and structural components (Master's thesis, Norwegian University of Life Sciences, Ås)
  • Zyla, K. (2001). Phytase applications in poultry feeding: Selected issues. J Anim Feed Sci, 10(2), 247-258. doi: 10.22358/jafs/67981/2001
Year 2018, , 65 - 74, 31.12.2018
https://doi.org/10.31797/vetbio.455687

Abstract

References

  • Abd-Alla, M.H. (1994). Use of organic phosphorus by Rhizobium leguminosarum biovarviceae phosphatases. Biol Fertil Soils, 18, 216-218. doi: 10.1007/BF00647669
  • Acamovic, T. (2001). Commercial application of enzyme technology for poultry production, World Poult Sci J, 57, 225-242. doi: 10.1079/WPS20010016
  • American Feed Industry Association (2018). AFIA Feed Industry Statistics. Arlington, VA, EEUU.
  • Ariff, R. M., Fitrianto, A., Manap, M. Y. A., Ideris, A., Kassim, A., Suhairin, A., Hussin, A. S. M. (2013). Cultivation conditions for phytase production from Recombinant Escherichia coli DH5α. Microbiol Insights, 6, MBI-S10402. doi: 10.4137/MBI.S10402
  • Bedford, M.R. & Schulze, H. (1998). Exogenous enzymes for pigs and poultry, Nutr Res Rev, 11, 91-114. doi: 10.1079/NRR19980007
  • Beshay, U., El Enshasy, H., Ismail, I.M.K, Moawad, H., Abdel Ghany, S. (2003). Glucanase production from genetically modified recombinant Escherichia coli: Effect of Growth Substrates and Development of a Culture Medium in Shake Flasks and Stirred Tank Bioreactor. Process Biochem, 39, 307-313.
  • Beshay, U., El Enshasy, H., Ismail, I.M.K., Moawad, H., Abd El-Ghany, S. (2011). Beta-Glucanase productivity improvement via cell immobilization of recombinant Escherichia coli cells in different matrices. Polish J Microbiol, 60, 133-138.
  • Bradbury, E.J., Wilkinson, S.J., Cronin, G.M., Thomson, P., Walk, C.L., & Cowieson, A.J. (2017). Evaluation of the effect of a highly soluble calcium source in broiler diets supplemented with phytase on performance, nutrient digestibility, foot ash, mobility and leg weakness. Anim Prod Sci, 57(10), 2016-2026. doi: 10.1071/AN16142
  • Broch, J., Nunes, R. V., Eyng, C., Pesti, G. M., de Souza, C., Sangalli, G. G., & Teixeira, L. (2018). Effect of dietary phytase superdosing on broiler performance. Anim Feed Sci Technol doi: 10.1016/j.anifeedsci.2018.06.001
  • Cabuk, M., Bozkurt, M., Kyrkpynar, & F., Ozkul, H. (2004). Effect of phytase supplementation of diets with different levels of phosphorus on performance and egg quality of laying hens in hot climatic conditions. S Afr J Anim Sci, 34(1), 13-17.doi: 10.4314/sajas.v34i1.3804
  • Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. (2007). Application of microbial phytase infish feed. Enzyme Microb Technol, 40, 497–507.doi: 10.1016/j.enzmictec.2007.01.007
  • Charoenrat, T., Antimanon, S., Kocharin, K., Tanapongpipat, S., Roongsawang, N. (2016). High cell density process for constitutive production of a recombinant phytase in thermotolerant methylotrophic yeast Ogataea thermomethanolica using table sugar as carbon source. Appl Biochem Biotechnol, 180(8), 1618-1634. doi: 10.1007/s12010-016-2191-8
  • Chen, C.C., Cheng, K.J., Ko, T.P., & Guo, R.T. (2015). Current progresses in phytase research: three‐dimensional structure and protein engineering. Chem Bio Eng Reviews, 2(2), 76-86. doi: 10.1002/cben.201400026
  • Chen, Y.P., Duan, W.G., Wang, L. L., Zhang, S. L., & Zhou, Y.M. (2013). Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. Int J Poult Sci 12(8), 441. doi: 10.3923/ijps.2013.441.444
  • Danicke, S., Jeroch, H., Bottcher, W., Bedford, M.R. & Ortwin, S. (1999). Effects of dietary fat type, pentosan level and xylanases on digestibility of fatty acids, liver lipids and vitamin E in broilers, Fettl Lipid, 101(3), 90-100. doi: 10.1002/(SICI)1521-4133(199903)101 :3<90::AID-LIPI90>3.0.CO;2-Q
  • Dersjant‐Li, Y., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric, 95(5), 878-896. doi: 10.1002/jsfa.6998
  • Dilger, R.N., Onyango, E.M., Sands, J.S., & Adeola, O. (2004). Evaluation of microbial phytase in broiler diets. Poult Sci, 83(6), 962-970. doi: 10.1093/ps/83.6.962
  • El Enshasy, H.A., Abdel Fattah, Y., Othman, N.Z. (2013). Amylases. In: Bioprocessing technologies in integrated biorefinery from production of biofuels, biochemicals, and biopolymers from biomass. Yang S-T, El Enshasy HA, Thongchul N (edts), First ed. John Wiley & Sons, USA 111-130.
  • El Enshasy, H.A., Othman, N.Z., Elsayed, E.A., Sarmidi, M.R., Wadaan, M.A., Aziz, R. (2016a). Functional enzymes for animal feed applications. In: The hand book of microbial bioresources. Gupta VK, Sharma GD, Touhy MG, Gaur R (edts), CABI Oxfordshire, UK. 296-312.
  • El Enshasy, H.A., Kandiyil, S.K., Malek, R., Othman, N.Z. (2016b). Xylanases: Sources, types and their applications. In: microbial enzymes in bioconversions of biomass. Gupta VK (ed). Springer International Publishing, Switzerland. 151-213.
  • Elsayed, E.A., Omar, H.G., Abdel Galil, S., El Enshasy, H.A. (2016). Optimization of fed-batch cultivation for extracellular α-amylase production by Bacillus amyloliquefaciens in submerged culture. J Sci Ind Res, 75, 480-486.
  • Gao, C.Q., Ji, C., Zhang, J.Y., Zhao, L.H., & Ma, Q.G. (2013). Effect of a novel plant phytase on performance, egg quality, apparent ileal nutrient digestibility and bone mineralization of laying hens fed corn–soybean diets. Anim Feed Sci Technol, 186,1-2, 101-105. doi: 10.1016/j.anifeedsci.2013.09.011
  • Ghosh, A., Mandal, G.P., Roy, A., & Patra, A.K. (2016). Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest Sci, 191, 80-85. doi: 10.1016/j.livsci.2016.07.014
  • Global Poultry Feed Market Report (2017). Analysis & Forecasts 2013-2021 - Emphasis on industrialization of livestock industry in Asia and South America
  • Greiner, R. (2007). Phytate-degrading enzymes: Regulation of synthesis in microorganisms and plants In: Turner, B.L. and Mullaney, E.J., Eds., Inositol Phosphates: Linking agriculture and the environment, CABI, Wallingford, UK, 78-96. doi: 10.1079/9781845931520.0078
  • Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technol Biotechnol, 44(2). 125-140.
  • Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and applications of phytases. Appl Microbiol Biotechnol, 68(5), 588-597. doi: 10.1007/s00253-005-0005-y
  • Hamdi, M., Perez, J. F., Létourneau-Montminy, M. P., Franco-Rosselló, R., Aligue, R., & Solà-Oriol, D. (2018). The effects of microbial phytases and dietary calcium and phosphorus levels on the productive performance and bone mineralization of broilers. Anim Feed Sci Technol doi: 10.1016/j.anifeedsci.2018.07.005
  • Haque, N., Hossain, A., Kumar, M., Kumar, V., & Tyagi, A.K. (2012). Phytase: their biochemistry, physiology and application in poultry. Int J Livest Res, 2(2), 30-41. doi: 10.5455/ijlr.20120407060451
  • Hu, H.L.,Wise, A., & Henderson, C. (1996). Hydrolysis of phytate and inositol tri-, tetra-, and penta-phosphates by the intestinal mucosa of the pig. Nutr Res, 16, 781-787. doi: 10.1016/0271-5317(96)00070-X
  • Humer, E., Schwarz, C., & Schedle, K. (2014). Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr 99(4),605-625, doi:10.1111/jpn.12258
  • Igbasan, F.A., Männer, K., Miksch, G., Borriss, R., Farouk, & A.,Simon, O. (2000). Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Anim Nutr, 53(4), 353-373. doi: 10.1080/17450390009381958
  • Jalal, M.A & Scheideler, S.E. (2001). Effect of supplementation of two different sources of phytase on egg production parameters in laying hens and nutrient digestibility. Poultry Sci, 80(10), 1463-1471.doi: 10.1093/ps/80.10.1463
  • Jorquera, M., Martinez, O., Maruyama, F., Marschner, P. & Mora de la Luz, M. (2008). Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ, 23, 182-191. doi: 10.1264/jsme2.23.182
  • Joseph, I., & Raj, R. P. (2007). Isolation and characterization of phytase producing Bacillus strains from mangrove ecosystem. J Marine Biol Ass India, 49,177–182.
  • Kandiyil, S., Abdul Malek, R., Aziz, R., El Enshasy, H.A. (2018). Development of an industrial feasible medium for enhanced production of extremely thermophilic recombinant Endo-1,4-β Xylanase by Escherichia coli. J Sci Ind Res, 77, 41-49.
  • Kim, J.H., Han, G.P., Shin, J.E., & Kil, D.Y. (2017). Effect of dietary calcium concentrations in phytase-containing diets on growth performance, bone mineralization, litter quality, and footpad dermatitis score in broiler chickens. Anim Feed Sci Technol, 229, 13-18. doi: 10.1016/j.anifeedsci.2017.04.008
  • Konietzny, U.G. (2002). Molecular and Catalytic Properties of Phytate-Degrading Enzymes (Phytases). Int J Food Sci Technol, 37, 791-812. doi: 10.1046/j.1365-2621.2002.00617.x
  • Kumar, A., Chanderman, A., Makolomakwa, M., Perumal, K, & Singh, S. (2016). Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit Rev Environ Sci Technol 46(6), 556-591 doi:10.1080/10643389.2015.1131562
  • Lan, J. C. W., Chang, C. K., Wu, H. S. (2014). Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale. J Biosci Bioeng. 118(3), 305-310. doi: 10.1016/j.jbiosc.2014.02.024.
  • Lalpanmawia, H., Elangovan, A.V., Sridhar, M., Shet, D., Ajith, S., Pal, D.T. (2014). Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim Feed Sci Technol, 192, 81-89. doi: 10.1016/j.anifeedsci.2014.03.004
  • Lee, S.A., Nagalakshmi, D., Raju, M.V., Rao, S.V.R., Bedford, M.R. (2017). Effect of phytase superdosing, myo-inositol and available phosphorus concentrations on performance and bone mineralisation in broilers. Anim Nutr, 3(3), 247-251. doi: 10.1016/j.aninu.2017.07.002
  • Lei, X.G., & Porres, J.M. (2003). Phytase enzymology, applications, and biotechnology. Biotechnol Lett, 25(21), 1787-1794. doi: 10.1038/nbt0793-811.
  • Li, W., Angel, R., Kim, S. W., Jiménez-Moreno, E., Proszkowiec-Weglarz, M., & Plumstead, P.W. (2018). Impacts of age and calcium on Phytase efficacy in broiler chickens. Anim Feed Sci Technol, 238, 9-17. doi: 10.1016/j.anifeedsci.2018.01.021
  • Liu, N., Liu, G. H., Li, F.D., Sands, J.S., Zhang, S., Zheng, A.J., Ru, Y.J. (2007). Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poultry Sci, 86(11), 2337-2342.doi: 10.3382/ps.2007-00079
  • Market Research Report (2017). Poultry Sector in South East Asia, Orissa International Pte. Ltd.
  • McCuaig, L., W. Davies, M.I., & Motzok, I. (1972). Regulation of intestinal alkaline phosphatase and phytase of chicks: effects of dietary magnesium, calcium, phosphorus and thyroactive casein. Poult Sci, 51, 526–530. doi:10.3382/ps.0510526
  • Mirzaei, M., Saffar, B., Shareghi, B. (2016). Cloning, codon optimization, and expression of Yersinia intermedia phytase gene in E. coli. Iran J Biotechnol, 14(2), 63. doi: 10.15171/ijb.1412
  • Morgan, N.K., Walk, C.L., Bedford, M.R., Scholey, D.V., Burton, E.J. (2016). Effect of feeding broilers diets differing in susceptible phytate content. Anim Nutr, 2(1), 33-39. doi:10.1016/j.aninu.2016.01.002
  • Moss, A.F., Chrystal, P.V., Dersjant-Li, Y., Selle, P.H., Liu, S.Y. (2018). Responses in digestibilities of macro-minerals, trace minerals and amino acids generated by exogenous phytase and xylanase in canola meal diets offered to broiler chickens. Anim Feed Sci Technol, 240, 22-30. doi: 10.1016/j.anifeedsci.2018.03.011
  • Moss, A.F., chrystal, P.V., Truong, H.H., Liu, S.Y., Selle, P H. (2017). Effects of phytase inclusions in diets containing ground wheat or 12.5% whole wheat (pre-and post-pellet) and phytase and protease additions, individually and in combination, to diets containing 12.5% pre-pellet whole wheat on the performance of broiler chickens. Anim Feed Sci Technol, 234, 139-150. Doi: 10.1016/j.anifeedsci.2017.09.007
  • Namkung, H., & Leeson, S. (1999). Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and amino acids in broiler chicks. Poult Sci, 78(9), 1317-1319. doi: 10.1093/ps/78.9.1317
  • Nissar, J., Ahad, T., Naik, H.R., & Hussain, S.Z. (2017). A review phytic acid: As antinutrient or nutraceutical. J Pharmacogn Phytochem, 6(6), 1554-1560.
  • Pariza, M.W. & Cook, M. (2010). Determining the safety of enzymes used in animal feed, Regul Toxicol Pharmacol, 56, 332-342. doi: 10.1016/j.yrtph.2009.10.005
  • Pakbaten, B., Heravi, R. M., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., Ziarat, M. M. (2018). Production of phytase enzyme by a bioengineered probiotic for degrading of phytate phosphorus in the digestive tract of poultry. Probiotics Antimicrob Proteins, 1-8. doi: 10.1007/s12602-018-9423-x
  • Pen, J., Verwoerd, T.C., van Paridon, P. A., Beudeker, R.F., van den Elzen, P., Geerse, K., & Hoekema, A. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat. Biotechnol., 11(7), 811.
  • Ravindran, V., Cabahug, S., Ravindran, G., & Bryden, W.L. (1999). Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult Sci, 78(5), 699-706. doi: 10.1093/ps/78.5.699
  • Ravindran, V., Cabahug, S., Ravindran, G., Selle, P.H., Bryden, W.L. (2000). Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br Poult Sci, 41(2), 193-200. doi: 10.1080/00071660050022263
  • Reddy, N.R., Sathe, S.K., & Salunkhe, D.K. (1982). Phytates in legumes and cereals. In Advances in food research (Vol. 28, pp. 1-92). Academic Press. doi: 10.1016/S0065-2628(08)60110-X
  • Richardson, A.E. & Hayes, J.E. (2000). Acid Phosphomonoesterase and Phytase Activities of Wheat (Triticum aestivum L.) Roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ, 23, 397-405. doi:10.1046/j.1365-3040.2000.00557.x
  • Richardson, A.E., Hadobas, P.A. & Hayes, J.E. (2001). Extracellular Secretion of Aspergillus Phytase from Arabidopsis Roots Enables Plants to Obtain Phosphorus from Phytate. Plant J, 25, 641-649. doi: 10.1046/j.1365-313x.2001.00998.x
  • Roofchaei, A., Rezaeipour, V., Vatandour, S., & Zaefarian, F. (2017). Influence of dietary carbohydrases, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed a wheat-based diet. Anim Nutr. doi: 10.1016/j.aninu.2017.12.001
  • Roy, M. P., Mazumdar, D., Dutta, S., Saha, S. P.,Ghosh, S. (2016). Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli. PloS one, 11(1), e0145745. Doi: 10.1371/journal.pone.0145745
  • Sa, K., Hr, C., & Ys, B. (2013). The effect of phytase enzyme on the performance of broiler flock (A-Review). Poultry Sci, 1(2), 117-125.doi: 10.22069/PSJ.2013.1478
  • Sabir, F., Tayyab, M., Muneer, B., Hashmi, A. S., Awan, A. R., Rashid, N.,Firyal, S. (2017). Characterization of recombinant thermostable phytase from thermotoga naphthophila: A step for the fulfilment of domestic requirement of phytase in Pakistan. Pak J Zool, 49(6). doi: 10.17582/journal.pjz/2017.49.6.1945.1951
  • Sasirekha, B., Bedashree, T., & Champa, K. (2012). Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. Euro J Exp Bio, 2,95–104.
  • Scholey, D.V., Morgan, N.K., Riemensperger, A., Hardy, R., & Burton, E.J (2018). Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult Sci, 97(7), 2435-2440. doi: 10.3382/ps/pey088Selle, P.H. & Ravindran, V. (2007). Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol, 135,1-41. doi: 10.1016/j.anifeedsci.2006.06.010
  • Silversides, F. G., & Hruby, M. (2009). Feed formulation using phytase in laying hen diets. J Appl Poult Res, 18(1), 15-22. doi: 10.3382/japr.2008-00035
  • Silversides, F.G. & Bedford, M.R. (1999). Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets, Poult Sci, 78,1184-1190. doi:10.1093/ps/78.8.1184
  • Singh, P., Kumar, V. & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol, 2014, Article ID: 426483. doi: 10.1155/2014/426483
  • Sugiura, S.H., Gabaudan, J., Dong, F. M., & Hardy, R.W. (2001). Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal‐based diets. Aquac Res, 32(7), 583-592. doi:10.1046/j.1365-2109.2001.00581.x
  • Tamim, N. M.; Angel, R.; Christman, M. (2004). Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult Scie, 83, 1358–1367 doi: 10.1093/ps/83.8.1358
  • Tai, H. M., Yin, L. J., Chen, W. C., Jiang, S. T. (2013). Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties. J Agric Food Chem, 61(25), 6007-6015. doi: 10.1021/jf401853b
  • Um, J. S., & Paik, I. K. (1999). Effects of microbial phytase supplementation on egg production, eggshell quality, and mineral retention of laying hens fed different levels of phosphorus. Poult Sci, 78(1), 75-79. doi: 10.1093/ps/78.1.75
  • Unno, Y., Okubo, K., Wasaki, J., Shinano, T. & Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. Environ Microbiol, 7, 396-404. doi: 10.1111/j.1462-2920.2004.00701.x
  • Vieira, B.S., Silva, F.G., Oliveira, C.F.S., Correa, A.B., Junior, J.C., Correa, G.S.S. (2017). Does citric acid improve performance and bone mineralization of broilers when combined with phytase? A systematic review and meta-analysis. Anim Feed Sci Technol, 232, 21-30. doi: 10.1016/j.anifeedsci.2017.07.016
  • Vijayaraghavan, P., Primiya, R.R., & Vincent, S.G.P. (2013). Thermostable alkaline phytase from Alcaligenes sp. in improving bioavailability of phosphorus in animal feed. In vitro analysis. ISRN Biotechnology, 1-6. doi; 10.5402/2013/394305
  • Viveros, A., Brenes, A., Arija, I., & Centeno, C. (2002). Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult Sci, 81(8), 1172-1183. doi: 10.1093/ps/81.8.1172
  • Yao, M. Z., Zhang, Y. H., Lu, W. L., Hu, M. Q., Wang, W., & Liang, A. H. (2012). Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol, 112(1), 1-14. doi; 10.1111/j.1365-2672.2011.05181.x
  • Yin, Q. Q., Zheng, Q.H., & Kang, X.T. (2007). Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim Feed Sci Technol, 132, 341-350. doi: 10.1016/j.anifeedsci.2006.03.016
  • Yoon, S.J., Min, H.K., Cho, K.K., Kim, J.W., Lee, S.C. & Jung, Y.H. (1996). Isolation and Identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol, 18, 449-454. doi: 10.1016/0141-0229(95)00131-X
  • Zhamuer, M. (2013). The effect of phytase supplementation on broiler and interaction between phytase and intermittent feeding and structural components (Master's thesis, Norwegian University of Life Sciences, Ås)
  • Zyla, K. (2001). Phytase applications in poultry feeding: Selected issues. J Anim Feed Sci, 10(2), 247-258. doi: 10.22358/jafs/67981/2001
There are 83 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Erratum
Authors

Hesham El Enshasy 0000-0002-9712-2033

Daniel Joe Dailin This is me

Nor Hasmaliana Abd Manas This is me

Nur İzyan Wan Azlee This is me

, Jennifer Eyahmalay This is me

, Sarah Afiqah Yahaya This is me

Roslinda Abd Malek This is me

Vickpasubathysiwa Siwapiragam This is me

Dalia Sukmawati This is me

Publication Date December 31, 2018
Submission Date August 29, 2018
Acceptance Date November 12, 2018
Published in Issue Year 2018

Cite

APA El Enshasy, H., Dailin, D. J., Abd Manas, N. H., Wan Azlee, N. İ., et al. (2018). Current and Future Applications of Phytases in Poultry Industry: A Critical Review. Journal of Advances in VetBio Science and Techniques, 3(3), 65-74. https://doi.org/10.31797/vetbio.455687

Cited By










22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download