Research Article
BibTex RIS Cite

Fungusit tebukonazolün tatlı su midyelerine (Unio mancus) toksik etkilerinin çoklu biyobelirteçlerle incelenmesi

Year 2021, Volume: 6 Issue: 3, 284 - 297, 31.12.2021
https://doi.org/10.31797/vetbio.1014522

Abstract

Triazol fungusitler, geniş spektrumlu, steroidal olmayan antiöstrojenler ve çeşitli endüstriyel uygulamalar için yaygın olarak kullanılmaktadır. Toprak, su gibi çevresel ortamlarda ve canlı organizmaların dokularında bu fungusitlerin kalıntılarına rastlanmaktadır. Giderek artan toksisite raporları, triazol fungusitlerin çevre ve halk sağlığı açısından endişe verici kirleticiler olarak ortaya çıkmasına neden olmuştur. Bu çalışmada, triazol grubu fungusitlerden en yaygın kullanılan türlerinden biri olan tebukonazolün (TEB) hedef dışı organizmalar olan tatlı su midyeleri (Unio mancus) üzerindeki toksik etkileri incelenmiştir. Çalışmada, 96 saat boyunca dört TEB konsantrasyonuna (1.5, 15, 150 ve 1500 µg Aİ L-1) maruz bırakılan midyelerin solungaç ve sindirim bezlerinde çeşitli oksidatif stres parametreleri [toplam antioksidan konsantrasyonu (TAC), toplam oksidan konsantrasyonu (TOC), oksidatif stres indeksi (OSI), glutatyon (GSH), malondialdehit (MDA)], antioksidan enzimler [(süperoksit dismutaz (SOD), glutatyon peroksidaz (GPx), glutatyon S-transferaz (GST), glutatyon redüktaz (GR)] ve biyotransformasyon enzimlerinden karboksil esteraz (CaE) aktivitesi değerlendirilmiştir. TEB’e maruz kalmanın, hem solungaçta hem de sindirim bezinde kontrole göre önemli oranda TAC, OSI, MDA seviyelerini arttırdığı, TOC ve GSH düzeylerini düşürdüğü, SOD, GPx, GST aktivitelerini arttırdığı, GR ve CaE’yi ise inhibe ettiği gözlenmiştir. Sonuç olarak, TEB’in U. mancus’da önemli toksik etkiler oluşturduğu ve tatlı su ekosistemlerinde yaşayan midyelerin TEB’e maruz kalma tehdidi altında olabileceği söylenebilir.

References

  • Abhijith, B.D., Ramesh, M., Poopal, R.K. (2016). Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Journal of Basic and Applied Zoology, 77, 31–40. https://doi.org/10.1016/j.jobaz.2015.11.002
  • Allen, D., Wilson, D., Drew, R., Perfect, J. (2015). Azole antifungals: 35 years of invasive fungal infection management. Expert Review of Anti-infective Therapy, 13(6), 787-98. https://doi.org/10.1586/14787210.2015.1032939
  • Alkan Uçkun, A. (2017). Ecotoxicological evaluation of pesticide pollution in Ataturk dam Lake (Euphrates River), Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 17(2), 313-321. https://doi.org/10.4194/1303-2712-v17_2_10
  • Bell, J.G., Cowey, C.B., Adro, J.W., Shanks, A.M. (1985). Some effects of vitamine and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). British Journal of Nutrition, 53, 149–57. https://doi.org/10.1079/BJN19850019
  • Bhagat, J., Singh, N., Nishimura, N., Shimada, Y. (2021). A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere, 262, 128335. https://doi.org/10.1016/j.chemosphere.2020.128335
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cao, F., Wu, P., Huang, L., Li, H., Qian, L., Pang, S., Qiu, L. (2018). Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio). Aquatic Toxicology, 198, 129-40. https://doi.org/10.1016/j.aquatox.2018.02.023
  • Chahine, S., O’Donnell, M.J. (2011). Interactions between detoxification mechanisms and excretion in malpighian tubules of Drosophila melanogaster. Journal of Experimental Biology, 214, 462-8. https://doi.org/10.1242/jeb.048884
  • Cribb, A.E., Leeder, J.S., Spielberg, S.P. (1989). Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry, 183, 195–6. https://doi.org/10.1016/0003-2697(89)90188-7
  • De Lima, D., Roque, G.M., De Almeida, E.A. (2013). In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Marine Environmental Research, 91, 45–51. https://doi.org/10.1016/j.marenvres.2012.11.005
  • De, A., Bose, R., Kumar, A., Mozumdar, S. (2014). Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer India, New Delhi, pp 59–81.
  • Denton, D.L., Wheelock, C.E., Murray, S.A., Deanovic, L.A., Hammock, B.D., Hinton, D.E. (2003). Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry: An International Journal, 22(2), 336-341. https://doi.org/10.1002/etc.5620220214
  • Di Giulio, R.T., Meyer, J.N. (2008). Reactive oxygen species and oxidative stress. In: Di Giulio, R.T., Hinton, D.E. (Eds.), The Toxicology of Fishes, CRC Press, Boca Raton, FL, pp. 273-324.
  • Dickinson, D.A., Forman, H.J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64, 1019–26. https://doi.org/10.1016/S0006-2952(02)01172-3
  • Djordjevic, J., Djordjevic, A., Adzic, M., Niciforovic, A., Radojcic, M.B. (2010). Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of Wistar rats. Physiological Research, 59(5), 729-36.
  • EFSA. (2008). European Food Safety Authority, Conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole. EFSA Scientific Report, 175, 1–104. https://doi.org/10.2903/j.efsa.2008.119r.
  • Elia, A.C., Galarini, R., Taticchi, M.I., Dörr, A.J.M., Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55,162-7. https://doi.org/10.1016/S0147-6513(02)00123-9
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38, 1103-11. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • García‐Valcárcel, A.I., Tadeo, J.L. (2012). Influence of moisture on the availability and persistence of clotrimazole and fluconazole in sludge-amended soil. Environmental Toxicology and Chemistry, 31, 501-7. https://doi.org/10.1002/etc.1711
  • Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974.) Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–39. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hamed, M., Soliman, H.A.M., Osman, A.G.M., Sayed, A.E.H. (2020). Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environmental Science and Pollution Research, 27, 14581-8. https://doi.org/10.1007/s11356-020-07898-y
  • Hemalatha, D., Amala, A., Rangasamy, B., Nataraj, B., Ramesh, M. (2015). Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environmental Toxicology, 31,1399-406. https://doi.org/10.1002/tox.22145
  • Hongyi, N., Wenjing, D., Qunhe, W., Xingeng, C. (2009). Potential toxic risk of heavy metals from sediment of the Pearl River in South China. Journal of Environmental Sciences, 21, 1053–58. https://doi.org/10.1016/s1001-0742(08)62381-5
  • IUCN. (2021, October 24). Unio mancus. The IUCN Red List of Threatened Species 2014: e.T22737A42466471. (Lopes-Lima, M., Seddon, M.B. (2014)). https://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T22737A42466471.en.
  • IUPAC (2021, October 5) Tebuconazole (Ref: HWG 1608), Environmental fate-ecotoxicology-human health-A to Z index. Retrieved from https://sitem.herts.ac.uk/aeru/iupac/Reports/610.htm.
  • Janna, H., Scrimshaw, M.D., Williams, R.J., Churchley, J., Sumpter, J.P. (2011). From Dishwasher to Tap? Xenobiotic Substances Benzotriazole and Tolyltriazole in the Environment. Environmental Science and Technology, 45(9), 3858–64. https://doi.org/10.1021/es103267g
  • Jiang, J., Chen, L., Liu, X., Wang, L., Wu, S., & Zhao, X. (2021). Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. Science of The Total Environment, 795, 148777.
  • Jiang, J., Shi, Y., Yu, R., Chen, L., Zhao, X. (2018). Biological response of zebrafish after short-term exposure to azoxystrobin. Chemosphere, 202, 56-64. https://doi.org/10.1016/j.chemosphere.2018.03.055
  • Korkmaz, V., Güngördü, A., Ozmen, M. (2018). Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicology and Environmental Safety, 160, 265-72. https://doi.org/10.1016/j.ecoenv.2018.05.055
  • Lenfant, N., Hotelier, T., Velluet, E., Bourne, Y., Marchot, P., Chatonnet, A. (2012). ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Research, 41, 423-29. https://doi.org/10.1093/nar/gks1154
  • Liu, N., Dong, F., Xu, J., Liu, X., Zheng, Y. (2016). Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 126, 78–84. https://doi.org/10.1016/j.ecoenv.2015.12.007
  • Ma, F., Li, Y., Yu, Y., Li, Z., Lin, L., Chen, Q., Xu, Q., Pan, P., Wang, Y., Ge, R.S. (2021). Gestational exposure to tebuconazole affects the development of rat fetal leydig cells. Chemosphere, 262, 127792. https://doi.org/10.1016/j.chemosphere.2020.127792
  • Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., Agarwal, A. (2009). Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91, 805-11. https://doi.org/10.1016/j.fertnstert.2008.01.022
  • McNeill, K.S., Cancilla, D.A. (2009). Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology, 82, 265-9. https://doi.org/10.1007/s00128-008-9626-z
  • Mercan, U. (2004). Toksikolojide serbest radikallerin önemi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 91-6.
  • Moreira, S.M., Moreira-Santos, M., Rendón-von Osten, J., Da Silva, E.M., Ribeiro, R., Guilhermino, L., Soares, A.M.V.M. (2010). Ecotoxicological tools for the tropics: Sublethal assays with fish to evaluate edge-of-field pesticide runoff toxicity. Ecotoxicology and Environmental Safety, 73(5), 893-9. https://doi.org/10.1016/j.ecoenv.2010.04.007
  • Moreno, I., Pichardo, S., Jos, A., Gomez-Amores, L., Mate, A., Vazquez, C. M., Camean, A. M. (2005). Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon, 45(4), 395-402. https://doi.org/10.1016/j.toxicon.2004.11.001
  • Moron, M.S., Depierre, J.W., Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-General Subjects, 582(1), 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  • Naimo. T.J. (1995). A review of the effects of heavy metals on freshwater mussels. Ecotoxicology, 4, 341-62. https://doi.org/10.1007/BF00118870
  • Narra, M.R., Rajender, K., Reddy, R.R., Rao, J.V., Begum, G. (2015). The role of vitamin C as antioxidant in protection biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132, 172–8. https://doi.org/10.1016/j.chemosphere.2015.03.006
  • Nikolaou, S., Efstathiou, P., Tiggiridou, M., Arabatzis, N., Piera, Y., Aletrari, M. (2017). Monitoring of pesticides in drinking, surface and ground water of Cyprus by liquid-liquid and solid phase extraction in combination with GC/MS and UPLC/MS/MS. Journal of Water Resource and Protection, 9, 1184–98. https://doi.org/10.4236/jwarp.2017.910077
  • Nong, Q.Y., Liu, Y.A., Qin, L.T., Liu, M., Mo, L.Y., Liang, Y.P., Zeng, H.H. (2021). Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere, 262, 127793. https://doi.org/10.1016/j.chemosphere.2020.127793
  • Oruç, E.Ö. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and Physiology, 96(3), 160-6. https://doi.org/10.1016/j.pestbp.2009.11.005
  • Pacholak, A., Burlaga, N., Frankowski, R., Zgoła-Grześkowiak, A., Kaczorek, E. (2022). Azole fungicides:(Bio) degradation, transformation products and toxicity elucidation. Science of the Total Environment, 802, 149917. https://doi.org/10.1016/j.scitotenv.2021.149917
  • Parke, D.V., Piotrowski, J.K. (1996). Glutathione: its role in detoxication of reactive oxygen species and environmental chemicals. Toxicology, 4(1), 1–13.
  • Peng, X., Huang, Q., Zhang, K., Yu, Y.,Wang, Z.,Wang, C. (2012). Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Science of the Total Environment, 426, 311-17. https://doi.org/10.1016/j.scitotenv.2012.03.067
  • Perendija, B.R., Borkovic, S.S., Kovacevic, T.B., Pavlović, S.Z., Stojanović, B.D., Paunovic, M.M., Cakic, P.D., Radojicic, R.M., Pajović, S.B., Saičić, Z.S. (2007). Glutathione dependent enzyme activities in the foot of three freshwater mussel species in the Sava River, Serbia. Archives of biological sciences, 59(3), 169-75. http://dx.doi.org/10.2298/ABS0703169P
  • Pinchuk, I., Shoval, H., Dotan, Y., Lichtenberg, D. (2012). Evaluation of antioxidants: scope, limitations and relevance of assays. Chemistry and Physics of Lipids, 165, 638-47. https://doi.org/10.1016/j.chemphyslip.2012.05.003
  • Placer, Z.A., Cushman, L.L., Johnson, B.C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-64. https://doi.org/10.1016/0003-2697(66)90167-9
  • PPDB. (2021, October 24). Pesticide Properties DataBase. University of Hertford-shire. Retrieved from http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/509.htm
  • Regoli, F. (2000). Total Oxyradical Scavenging Capacity (TOSC) in Polluted and Translocated Mussels: A Predictive Biomarker of Oxidative Stress. Aquatic Toxicology, 50, 351-61. https://doi.org/10.1016/S0166-445X(00)00091-6
  • Ross, M.K., Streit, T.M., Herring, K.L., Xie, S. (2010). Carboxylesterases: dual roles in lipid and pesticide metabolism. Journal of Pesticide Science, 35, 257–64. https://doi.org/10.1584/jpestics.R10-07
  • Santhoshkumar, P., Shivanandappa, T. (1999). In vitro sequestration of two organophosphorus homologs by the rat liver. Chemico-Biological Interactions, 119, 277–82. https://doi.org/10.1016/s0009-2797(99)00037-x
  • Sayed, A.E.H., Abu Khalil, N.S. (2016). Oxidative Stress Induction in Monosex Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758): A Field Study on the Side Effects of Methyltestosterone. Journal of Aquaculture Research and Development, 7, 1-6. https://doi.org/10.4172/2155-9546.1000416
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295-301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Schafer, F.Q., Buettner, G.R. (2001). Redox environment ofthe cell as viewed through glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30, 1191-212. https://doi.org/10.1016/S0891-5849(01)00480-4
  • Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, E., Faggio, C., Svobodova, Z. (2017). Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere, 188, 414–23. https://doi.org/10.1016/j.chemosphere.2017.08.151
  • Sun, Y., Oberley, L.W., Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500. https://doi.org/10.1093/clinchem/34.3.497
  • U.S.EPA (2020). Aquatic life benchmarks and ecological risk assessments for registered pesticides. Retrieved April 7, 2021, from https://www.epa.gov/pesticide-science-andassessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk.
  • Uçkun, A.A., Öz, Ö.B. (2020). Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823). Environmental Science and Pollution Research, 27(28), 35626-37. https://doi.org/10.1007/s11356-020-09595-2
  • Uçkun, A.A., Öz, Ö.B. (2021). Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology, 44(5), 550-7. https://doi.org/10.1080/01480545.2020.1774604
  • Uçkun, A.A., Uçkun, M. (2021). Evaluation of Some Biomarkers in Carp (Cyprinus carpio Linnaeus, 1758) Depending on Water and Sediment Pollution of Atatürk Dam Lake. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 744-53. https://doi.org/10.17798/bitlisfen.898021
  • Uçkun, M., Alkan Uçkun, A. (2021). Tatlı Su Midyelerine (Unio mancus) İmidakloprid Uygulanmasının Solungaç ATPaz Aktiviteleri Üzerine Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1), 91-98.
  • Uçkun, M., Özmen, M. (2021). Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to the Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms. Environmental Toxicology and Chemistry, 40(10), 2846-60. https://doi.org/10.1002/etc.5158
  • Uçkun, M., Yoloğlu, E., Uçkun, A.A., Öz, Ö.B. (2021). Acute Toxicity of Insecticide Thiamethoxam to Crayfish (Astacus leptodactylus): Alterations in Oxidative Stress Markers, ATPases and Cholinesterase. Acta Chimica Slovenica, 68(3), 521-31. http://dx.doi.org/10.17344/acsi.2021.6823
  • Vahdati Hassani, F., Abnous, K., Mehri, S., Jafarian, A., Birner-Gruenberger, R., Yazdian Robati, R., Hosseinzadeh, H. (2018). Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food and Chemical Toxicology, 112, 26 –38. https://doi.org/10.1016/j.fct.2017.12.021
  • Van Rensburg, S.J., Carstens, M.E., Potocnik, F.C.V., Van Der Spuy, G., Van Der Walt, B.J., Taljaard, J.J.F. (1995). Transferrin C2 and Alzheimer's disease: another piece of the puzzle found? Medical Hypotheses, 44(4), 268-72. https://doi.org/10.1016/0306-9877(95)90178-7
  • Wheelock, C.E., Eder, K.J., Werner, I., Huang, H., Jones, P.D., Brammell, B.F., Elskus, A.A., Hammock, B.D. (2005). Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74(2), 172-92. https://doi.org/10.1016/j.aquatox.2005.05.009
  • Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic toxicology, 19(2), 137-61. https://doi.org/10.1016/0166-445X(91)90033-6
  • Yonar, S.M., Ural, M.Ş., Silici, S., Yonar, M.E. (2014). Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: Protective role of propolis. Ecotoxicology and Environmental Safety, 102, 202-9. https://doi.org/10.1016/j.ecoenv.2014.01.007
  • Yoloğlu, E. (2019). Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and Total-ATPase Activities in Gills of Freshwater Mussels Exposed to Penconazole. Commagene Journal of Biology, 3(2), 88-92. https://doi.org/10.31594/commagene.632082

Investigation of toxic effects of fungicide tebuconazole on freshwater mussels (Unio mancus) with multiple biomarkers

Year 2021, Volume: 6 Issue: 3, 284 - 297, 31.12.2021
https://doi.org/10.31797/vetbio.1014522

Abstract

Triazole fungicides are widely used as broad-spectrum, non-steroidal antiestrogens and for various industrial applications. Residues of these fungicides are found in environments such as soil and water, and in the tissues of living organisms. Increasing toxicity reports have led to the emergence of triazole fungicides as pollutants of environmental and public health concern. In this study, the toxic effects of tebuconazole (TEB), one of the most widely used triazole fungicides, on freshwater mussels (Unio mancus), which are non-target organisms, were investigated. In the study, various oxidative stress parameters [total antioxidant concentration (TAC), total oxidant concentration (TOC), oxidative stress index (OSI), glutathione (GSH), malondialdehyde (MDA)], antioxidant enzymes [(superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR)] and carboxylesterase (CaE) activity from biotransformation enzymes was evaluated in the gill and digestive glands of mussels exposed to four TEB concentrations (1.5, 15, 150 and 1500 µg AI L-1) for 96 hours. It was observed that TEB exposure significantly increased TAC, OSI, MDA levels, decreased TOC and GSH levels, increased SOD, GPx, GST activities, and inhibited GR and CaE activities in both the gill and digestive gland compared to the control. As a result, it can be said that TEB has significant toxic effects on U. mancus and mussels living in freshwater ecosystems may be under the threat of TEB exposure.

References

  • Abhijith, B.D., Ramesh, M., Poopal, R.K. (2016). Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Journal of Basic and Applied Zoology, 77, 31–40. https://doi.org/10.1016/j.jobaz.2015.11.002
  • Allen, D., Wilson, D., Drew, R., Perfect, J. (2015). Azole antifungals: 35 years of invasive fungal infection management. Expert Review of Anti-infective Therapy, 13(6), 787-98. https://doi.org/10.1586/14787210.2015.1032939
  • Alkan Uçkun, A. (2017). Ecotoxicological evaluation of pesticide pollution in Ataturk dam Lake (Euphrates River), Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 17(2), 313-321. https://doi.org/10.4194/1303-2712-v17_2_10
  • Bell, J.G., Cowey, C.B., Adro, J.W., Shanks, A.M. (1985). Some effects of vitamine and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). British Journal of Nutrition, 53, 149–57. https://doi.org/10.1079/BJN19850019
  • Bhagat, J., Singh, N., Nishimura, N., Shimada, Y. (2021). A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere, 262, 128335. https://doi.org/10.1016/j.chemosphere.2020.128335
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cao, F., Wu, P., Huang, L., Li, H., Qian, L., Pang, S., Qiu, L. (2018). Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio). Aquatic Toxicology, 198, 129-40. https://doi.org/10.1016/j.aquatox.2018.02.023
  • Chahine, S., O’Donnell, M.J. (2011). Interactions between detoxification mechanisms and excretion in malpighian tubules of Drosophila melanogaster. Journal of Experimental Biology, 214, 462-8. https://doi.org/10.1242/jeb.048884
  • Cribb, A.E., Leeder, J.S., Spielberg, S.P. (1989). Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry, 183, 195–6. https://doi.org/10.1016/0003-2697(89)90188-7
  • De Lima, D., Roque, G.M., De Almeida, E.A. (2013). In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Marine Environmental Research, 91, 45–51. https://doi.org/10.1016/j.marenvres.2012.11.005
  • De, A., Bose, R., Kumar, A., Mozumdar, S. (2014). Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer India, New Delhi, pp 59–81.
  • Denton, D.L., Wheelock, C.E., Murray, S.A., Deanovic, L.A., Hammock, B.D., Hinton, D.E. (2003). Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry: An International Journal, 22(2), 336-341. https://doi.org/10.1002/etc.5620220214
  • Di Giulio, R.T., Meyer, J.N. (2008). Reactive oxygen species and oxidative stress. In: Di Giulio, R.T., Hinton, D.E. (Eds.), The Toxicology of Fishes, CRC Press, Boca Raton, FL, pp. 273-324.
  • Dickinson, D.A., Forman, H.J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64, 1019–26. https://doi.org/10.1016/S0006-2952(02)01172-3
  • Djordjevic, J., Djordjevic, A., Adzic, M., Niciforovic, A., Radojcic, M.B. (2010). Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of Wistar rats. Physiological Research, 59(5), 729-36.
  • EFSA. (2008). European Food Safety Authority, Conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole. EFSA Scientific Report, 175, 1–104. https://doi.org/10.2903/j.efsa.2008.119r.
  • Elia, A.C., Galarini, R., Taticchi, M.I., Dörr, A.J.M., Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55,162-7. https://doi.org/10.1016/S0147-6513(02)00123-9
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38, 1103-11. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • García‐Valcárcel, A.I., Tadeo, J.L. (2012). Influence of moisture on the availability and persistence of clotrimazole and fluconazole in sludge-amended soil. Environmental Toxicology and Chemistry, 31, 501-7. https://doi.org/10.1002/etc.1711
  • Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974.) Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–39. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hamed, M., Soliman, H.A.M., Osman, A.G.M., Sayed, A.E.H. (2020). Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environmental Science and Pollution Research, 27, 14581-8. https://doi.org/10.1007/s11356-020-07898-y
  • Hemalatha, D., Amala, A., Rangasamy, B., Nataraj, B., Ramesh, M. (2015). Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environmental Toxicology, 31,1399-406. https://doi.org/10.1002/tox.22145
  • Hongyi, N., Wenjing, D., Qunhe, W., Xingeng, C. (2009). Potential toxic risk of heavy metals from sediment of the Pearl River in South China. Journal of Environmental Sciences, 21, 1053–58. https://doi.org/10.1016/s1001-0742(08)62381-5
  • IUCN. (2021, October 24). Unio mancus. The IUCN Red List of Threatened Species 2014: e.T22737A42466471. (Lopes-Lima, M., Seddon, M.B. (2014)). https://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T22737A42466471.en.
  • IUPAC (2021, October 5) Tebuconazole (Ref: HWG 1608), Environmental fate-ecotoxicology-human health-A to Z index. Retrieved from https://sitem.herts.ac.uk/aeru/iupac/Reports/610.htm.
  • Janna, H., Scrimshaw, M.D., Williams, R.J., Churchley, J., Sumpter, J.P. (2011). From Dishwasher to Tap? Xenobiotic Substances Benzotriazole and Tolyltriazole in the Environment. Environmental Science and Technology, 45(9), 3858–64. https://doi.org/10.1021/es103267g
  • Jiang, J., Chen, L., Liu, X., Wang, L., Wu, S., & Zhao, X. (2021). Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. Science of The Total Environment, 795, 148777.
  • Jiang, J., Shi, Y., Yu, R., Chen, L., Zhao, X. (2018). Biological response of zebrafish after short-term exposure to azoxystrobin. Chemosphere, 202, 56-64. https://doi.org/10.1016/j.chemosphere.2018.03.055
  • Korkmaz, V., Güngördü, A., Ozmen, M. (2018). Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicology and Environmental Safety, 160, 265-72. https://doi.org/10.1016/j.ecoenv.2018.05.055
  • Lenfant, N., Hotelier, T., Velluet, E., Bourne, Y., Marchot, P., Chatonnet, A. (2012). ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Research, 41, 423-29. https://doi.org/10.1093/nar/gks1154
  • Liu, N., Dong, F., Xu, J., Liu, X., Zheng, Y. (2016). Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 126, 78–84. https://doi.org/10.1016/j.ecoenv.2015.12.007
  • Ma, F., Li, Y., Yu, Y., Li, Z., Lin, L., Chen, Q., Xu, Q., Pan, P., Wang, Y., Ge, R.S. (2021). Gestational exposure to tebuconazole affects the development of rat fetal leydig cells. Chemosphere, 262, 127792. https://doi.org/10.1016/j.chemosphere.2020.127792
  • Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., Agarwal, A. (2009). Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91, 805-11. https://doi.org/10.1016/j.fertnstert.2008.01.022
  • McNeill, K.S., Cancilla, D.A. (2009). Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology, 82, 265-9. https://doi.org/10.1007/s00128-008-9626-z
  • Mercan, U. (2004). Toksikolojide serbest radikallerin önemi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 91-6.
  • Moreira, S.M., Moreira-Santos, M., Rendón-von Osten, J., Da Silva, E.M., Ribeiro, R., Guilhermino, L., Soares, A.M.V.M. (2010). Ecotoxicological tools for the tropics: Sublethal assays with fish to evaluate edge-of-field pesticide runoff toxicity. Ecotoxicology and Environmental Safety, 73(5), 893-9. https://doi.org/10.1016/j.ecoenv.2010.04.007
  • Moreno, I., Pichardo, S., Jos, A., Gomez-Amores, L., Mate, A., Vazquez, C. M., Camean, A. M. (2005). Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon, 45(4), 395-402. https://doi.org/10.1016/j.toxicon.2004.11.001
  • Moron, M.S., Depierre, J.W., Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-General Subjects, 582(1), 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  • Naimo. T.J. (1995). A review of the effects of heavy metals on freshwater mussels. Ecotoxicology, 4, 341-62. https://doi.org/10.1007/BF00118870
  • Narra, M.R., Rajender, K., Reddy, R.R., Rao, J.V., Begum, G. (2015). The role of vitamin C as antioxidant in protection biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132, 172–8. https://doi.org/10.1016/j.chemosphere.2015.03.006
  • Nikolaou, S., Efstathiou, P., Tiggiridou, M., Arabatzis, N., Piera, Y., Aletrari, M. (2017). Monitoring of pesticides in drinking, surface and ground water of Cyprus by liquid-liquid and solid phase extraction in combination with GC/MS and UPLC/MS/MS. Journal of Water Resource and Protection, 9, 1184–98. https://doi.org/10.4236/jwarp.2017.910077
  • Nong, Q.Y., Liu, Y.A., Qin, L.T., Liu, M., Mo, L.Y., Liang, Y.P., Zeng, H.H. (2021). Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere, 262, 127793. https://doi.org/10.1016/j.chemosphere.2020.127793
  • Oruç, E.Ö. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and Physiology, 96(3), 160-6. https://doi.org/10.1016/j.pestbp.2009.11.005
  • Pacholak, A., Burlaga, N., Frankowski, R., Zgoła-Grześkowiak, A., Kaczorek, E. (2022). Azole fungicides:(Bio) degradation, transformation products and toxicity elucidation. Science of the Total Environment, 802, 149917. https://doi.org/10.1016/j.scitotenv.2021.149917
  • Parke, D.V., Piotrowski, J.K. (1996). Glutathione: its role in detoxication of reactive oxygen species and environmental chemicals. Toxicology, 4(1), 1–13.
  • Peng, X., Huang, Q., Zhang, K., Yu, Y.,Wang, Z.,Wang, C. (2012). Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Science of the Total Environment, 426, 311-17. https://doi.org/10.1016/j.scitotenv.2012.03.067
  • Perendija, B.R., Borkovic, S.S., Kovacevic, T.B., Pavlović, S.Z., Stojanović, B.D., Paunovic, M.M., Cakic, P.D., Radojicic, R.M., Pajović, S.B., Saičić, Z.S. (2007). Glutathione dependent enzyme activities in the foot of three freshwater mussel species in the Sava River, Serbia. Archives of biological sciences, 59(3), 169-75. http://dx.doi.org/10.2298/ABS0703169P
  • Pinchuk, I., Shoval, H., Dotan, Y., Lichtenberg, D. (2012). Evaluation of antioxidants: scope, limitations and relevance of assays. Chemistry and Physics of Lipids, 165, 638-47. https://doi.org/10.1016/j.chemphyslip.2012.05.003
  • Placer, Z.A., Cushman, L.L., Johnson, B.C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-64. https://doi.org/10.1016/0003-2697(66)90167-9
  • PPDB. (2021, October 24). Pesticide Properties DataBase. University of Hertford-shire. Retrieved from http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/509.htm
  • Regoli, F. (2000). Total Oxyradical Scavenging Capacity (TOSC) in Polluted and Translocated Mussels: A Predictive Biomarker of Oxidative Stress. Aquatic Toxicology, 50, 351-61. https://doi.org/10.1016/S0166-445X(00)00091-6
  • Ross, M.K., Streit, T.M., Herring, K.L., Xie, S. (2010). Carboxylesterases: dual roles in lipid and pesticide metabolism. Journal of Pesticide Science, 35, 257–64. https://doi.org/10.1584/jpestics.R10-07
  • Santhoshkumar, P., Shivanandappa, T. (1999). In vitro sequestration of two organophosphorus homologs by the rat liver. Chemico-Biological Interactions, 119, 277–82. https://doi.org/10.1016/s0009-2797(99)00037-x
  • Sayed, A.E.H., Abu Khalil, N.S. (2016). Oxidative Stress Induction in Monosex Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758): A Field Study on the Side Effects of Methyltestosterone. Journal of Aquaculture Research and Development, 7, 1-6. https://doi.org/10.4172/2155-9546.1000416
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295-301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Schafer, F.Q., Buettner, G.R. (2001). Redox environment ofthe cell as viewed through glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30, 1191-212. https://doi.org/10.1016/S0891-5849(01)00480-4
  • Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, E., Faggio, C., Svobodova, Z. (2017). Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere, 188, 414–23. https://doi.org/10.1016/j.chemosphere.2017.08.151
  • Sun, Y., Oberley, L.W., Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500. https://doi.org/10.1093/clinchem/34.3.497
  • U.S.EPA (2020). Aquatic life benchmarks and ecological risk assessments for registered pesticides. Retrieved April 7, 2021, from https://www.epa.gov/pesticide-science-andassessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk.
  • Uçkun, A.A., Öz, Ö.B. (2020). Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823). Environmental Science and Pollution Research, 27(28), 35626-37. https://doi.org/10.1007/s11356-020-09595-2
  • Uçkun, A.A., Öz, Ö.B. (2021). Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology, 44(5), 550-7. https://doi.org/10.1080/01480545.2020.1774604
  • Uçkun, A.A., Uçkun, M. (2021). Evaluation of Some Biomarkers in Carp (Cyprinus carpio Linnaeus, 1758) Depending on Water and Sediment Pollution of Atatürk Dam Lake. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 744-53. https://doi.org/10.17798/bitlisfen.898021
  • Uçkun, M., Alkan Uçkun, A. (2021). Tatlı Su Midyelerine (Unio mancus) İmidakloprid Uygulanmasının Solungaç ATPaz Aktiviteleri Üzerine Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1), 91-98.
  • Uçkun, M., Özmen, M. (2021). Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to the Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms. Environmental Toxicology and Chemistry, 40(10), 2846-60. https://doi.org/10.1002/etc.5158
  • Uçkun, M., Yoloğlu, E., Uçkun, A.A., Öz, Ö.B. (2021). Acute Toxicity of Insecticide Thiamethoxam to Crayfish (Astacus leptodactylus): Alterations in Oxidative Stress Markers, ATPases and Cholinesterase. Acta Chimica Slovenica, 68(3), 521-31. http://dx.doi.org/10.17344/acsi.2021.6823
  • Vahdati Hassani, F., Abnous, K., Mehri, S., Jafarian, A., Birner-Gruenberger, R., Yazdian Robati, R., Hosseinzadeh, H. (2018). Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food and Chemical Toxicology, 112, 26 –38. https://doi.org/10.1016/j.fct.2017.12.021
  • Van Rensburg, S.J., Carstens, M.E., Potocnik, F.C.V., Van Der Spuy, G., Van Der Walt, B.J., Taljaard, J.J.F. (1995). Transferrin C2 and Alzheimer's disease: another piece of the puzzle found? Medical Hypotheses, 44(4), 268-72. https://doi.org/10.1016/0306-9877(95)90178-7
  • Wheelock, C.E., Eder, K.J., Werner, I., Huang, H., Jones, P.D., Brammell, B.F., Elskus, A.A., Hammock, B.D. (2005). Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74(2), 172-92. https://doi.org/10.1016/j.aquatox.2005.05.009
  • Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic toxicology, 19(2), 137-61. https://doi.org/10.1016/0166-445X(91)90033-6
  • Yonar, S.M., Ural, M.Ş., Silici, S., Yonar, M.E. (2014). Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: Protective role of propolis. Ecotoxicology and Environmental Safety, 102, 202-9. https://doi.org/10.1016/j.ecoenv.2014.01.007
  • Yoloğlu, E. (2019). Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and Total-ATPase Activities in Gills of Freshwater Mussels Exposed to Penconazole. Commagene Journal of Biology, 3(2), 88-92. https://doi.org/10.31594/commagene.632082
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Miraç Uçkun 0000-0002-9018-8515

Publication Date December 31, 2021
Submission Date October 25, 2021
Acceptance Date December 29, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Uçkun, M. (2021). Fungusit tebukonazolün tatlı su midyelerine (Unio mancus) toksik etkilerinin çoklu biyobelirteçlerle incelenmesi. Journal of Advances in VetBio Science and Techniques, 6(3), 284-297. https://doi.org/10.31797/vetbio.1014522

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download