Review
BibTex RIS Cite

OKSİDATİF STRESİN BAZI KANSER TÜRLERİ VE TEDAVİ YAKLAŞIMLARI ÜZERİNDEKİ ETKİLERİ: DERLEME

Year 2024, , 58 - 63, 31.08.2024
https://doi.org/10.38137/vftd.1361976

Abstract

Kanser, tarih boyunca insanlar ve hayvanlar için refah düzeyini büyük oranda etkilediğinden en büyük zorluklardan biri olmuştur. Mevcut kemoterapik ajana rağmen kanserin tedavisinde tam anlamıyla başarılı sonuçlar alınamadığından yüzlerce çalışmanın temelini oluşturmuştur. Kanserin mekanizması birçok farklı faktöre bağlıdır. Bu faktörlerden biri olan oksidatif stres, çeşitli kanser türlerinin gelişiminde önemli rol oynamaktadır. Normalde sağlıklı bir metabolizmada mitokondri, oksijen metabolizmasının bir yan ürünü olarak peroksit, süperoksit, hidroksil radikalleri ve tekli oksijen gibi küçük miktarlarda reaktif oksijen türleri (ROS) üretir. Elektron alıcı moleküller olarak adlandırılan serbest radikallerin oksijen türevlerine ise oksidanlar denir. Oksidatif stres, reaktif oksijen türlerinin (ROS) düzeylerinin artması sonucu hücrenin antioksidan savunma mekanizmasının bozulması olarak tanımlanabilir. Oksidatif stresin bozulması endojen ve ekzojen kaynaklıdır. Hücrelerdeki oksidatif stresin artmasıyla onkogenlerin ve tümör baskılayıcı genlerin ekspresyonunu etkiler ve hücre bölünme mekanizmasının bozulmasıyla kanser oluşumuna zemin hazırlar.
Farklı kemoterapötik ajanların kullanımıyla bitki kaynaklı polifenoller, kanser oluşumunun farklı aşamalarında etki göstererek kanser hücrelerinin apoptozunu indüklemek veya inhibe etmek için etkileşime girer. Ancak kemoterapiklerin kullanımı bazen kalıcı sağlık sorunlarına yol açabilmektedir. Kalıcı sağlık sorunlarını en aza indirmek için kemoterapi çeşitli bileşiklerle kombinasyon halinde verilir. Bu bileşiklerin bir kısmı polifenoller açısından zengin bitki gruplarıdır. Fakat bitki kullanımına yönelik çeşitli görüşlerde mevcuttur. Bu derlemenin amacı kanserde oksidatif stresin mekanizmalarını açıklamak, geliştirilen ajanları değerlendirmek ve polifenollerin kullanımını araştırmaktır.

References

  • Blumberg, J. (2004). Use of biomarkers of oxidative stress in research studies. The Journal of Nutrition, 134(11), 3188S–3189S. Borrelli, A., Bonelli, P., Tuccillo, M. F., Goldfine, I. D., Evans, J. L., Buonaguro, F. M. & Mancini, A. (2018). Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biology, 15, 467–479.
  • Cheng, T., Yang, C. & Shyur, F. (2016). Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacological Research, 114, 128–143.
  • Choi, D. & Lee, S. (2013). Interplay between Epigenetics and Genetics in Cancer. Genomics & İnformatics, 11(4), 164-173.
  • Esposito, E. & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin incentral nervous system. Current Neuropharmacology, 8(3), 228–242.
  • Estornut, C., Milara, J., Bayarri, A., Belhadj, N. & Cortijo, J. (2022). Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12, 794997.
  • Forcados, E., James, B., Sallau, B. & Mabeta P. (2017). Oxidative Stress and Carcinogenesis: Potential of Phytochemicals in Breast Cancer Therapy. Nutrition and Cancer, 69(3), 365–374
  • Gloire, G., Legrand-Poels, S. & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochemical Pharmacology, 72(11), 1493–1505.
  • Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y. & Hayashi J-I. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science (New York, N.Y.) 320(5876), 661–664.
  • Jelic, D., Mandic, D., Maricic, M. & Srdjenovic, U. (2021). Oxidative stress and its role in cancer. Journal of Cancer Research and Therapeutics, 17(1), 22–28.
  • Klaunig, E. (2018). Oxidative Stress and Cancer. Current Pharmaceutical Design, 24(40), 4771–4778. Lee, L., Huang, Y. & Shyur, F. (2013). Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxidative Medicine and Cellular Longevity, 925804.
  • Mileo, M. & Miccadei, S. (2016). Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxidative Medicine and Cellular Longevity, 6475624.
  • Milkovic, L., Siems, W., Siems, R. & Zarkovic, N. (2014). Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer. Current pharmaceutical design, 20(42), 6529–6542.
  • Obrador, E., Liu-Smith, F., Dellinger, W., Salvador, R., Meyskens, L. & Estrela, M. (2019). Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biological Chemistry, 400(5), 589–612.
  • Ohl, K. & Tenbrock, K. (2018). Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Frontiers in İmmunology, 9, 2499.
  • Sato‐Dahlman, M., Wirth, K. & Yamamoto, M. (2018). Role of genetherapy in pancreatic cancer—A review. Cancers, 10(4), 103.
  • Siegel, L., Miller, D. & Jemal, A. (2019). Cancer Statistics. CA: A Cancer Journal for Clinicians, 69(1), 7–34.
  • Starobova, H. & Vetter, I. (2017). Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Molecular Neuroscience,10, 174.
  • Tamtaji, R., Mirhosseini, N., Reiter, J., Behnamfar, M. & Asemi, Z. (2019). Melatonin and pancreatic cancer: Current knowledge and future perspectives. Journal of Cellular Physiology, 234(5), 5372–5378.
  • Thapa, D. & Ghosh, R. (2015). Chronic inflammatory mediators enhance prostate cancer development and progression. Biochemical Pharmacology, 94(2), 53–62.
  • Toyokuni, S. (2006). Novel aspects of oxidative stress-associated carcinogenesis. Antioxidants & Redox Signaling, 8(7-8), 1373–1377.
  • Wang, F., Lv, H., Zhao, B., Zhou, L., Wang, S., Luo, J., Liu, J. & Shang, P. (2019). Iron and leukemia: new insights for future treatments. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 406.
  • Valavanidis, A. & Vlachogianni, T. (2009). Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 27(2), 120–139.
  • Zhang, Y., Li, Q., Xu, D., Li, T., Gu, Z., Huang, P. & Ren, L. (2021). Idarubicin-induced oxidative stress and apoptosis in cardiomyocytes: An in vitro molecular approach. Human & Experimental Toxicology, 40(12), S553–S562.
  • Zhou, L., Zhao, B., Zhang, L., Wang, S., Dong, D., Lv, H. & Shang, P. (2018). Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. International Journal of Molecular Sciences, 19(5), 1545.

EFFECTS OF OXIDATIVE STRESS ON SOME CANCER TYPES AND TREATMENT APPROCHES: A REVIEW

Year 2024, , 58 - 63, 31.08.2024
https://doi.org/10.38137/vftd.1361976

Abstract

Cancer has historically been one of the greatest challenges as it greatly affects the well-being of humans and animals. Despite the current chemotherapeutic agent, it has formed the basis of hundreds of studies, since completely successful results have not been achieved in the treatment of cancer. The mechanism of cancer depends on many different factors. One of these factors, oxidative stress, plays an important role in the development of various types of cancer. In a normal healthy metabolism, mitochondria produce small amounts of reactive oxygen species (ROS) as a byproduct of oxygen metabolism. Oxidative stress can be defined as the deterioration of the antioxidant defense mechanism of the cell as a result of increased reactive oxygen species (ROS) levels. With the increase of oxidative stress in cells, it affects the expression of oncogenes and tumor suppressor genes and paves the way for cancer formation by disrupting the cell division mechanism.
With the use of different chemotherapeutic agents, plant-derived polyphenols interact to induce or inhibit apoptosis of cancer cells by acting at different stages of cancer formation. However, the use of chemotherapy can sometimes lead to permanent health problems. Chemotherapy is given in combination with various compounds to minimize persistent health problems. Some of these compounds are plant groups rich in polyphenols. However, there are various views on the use of plants. This review aims to explain the mechanisms of oxidative stress in cancer, evaluate the developed agents and investigate the use of polyphenols.

References

  • Blumberg, J. (2004). Use of biomarkers of oxidative stress in research studies. The Journal of Nutrition, 134(11), 3188S–3189S. Borrelli, A., Bonelli, P., Tuccillo, M. F., Goldfine, I. D., Evans, J. L., Buonaguro, F. M. & Mancini, A. (2018). Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biology, 15, 467–479.
  • Cheng, T., Yang, C. & Shyur, F. (2016). Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacological Research, 114, 128–143.
  • Choi, D. & Lee, S. (2013). Interplay between Epigenetics and Genetics in Cancer. Genomics & İnformatics, 11(4), 164-173.
  • Esposito, E. & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin incentral nervous system. Current Neuropharmacology, 8(3), 228–242.
  • Estornut, C., Milara, J., Bayarri, A., Belhadj, N. & Cortijo, J. (2022). Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12, 794997.
  • Forcados, E., James, B., Sallau, B. & Mabeta P. (2017). Oxidative Stress and Carcinogenesis: Potential of Phytochemicals in Breast Cancer Therapy. Nutrition and Cancer, 69(3), 365–374
  • Gloire, G., Legrand-Poels, S. & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochemical Pharmacology, 72(11), 1493–1505.
  • Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y. & Hayashi J-I. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science (New York, N.Y.) 320(5876), 661–664.
  • Jelic, D., Mandic, D., Maricic, M. & Srdjenovic, U. (2021). Oxidative stress and its role in cancer. Journal of Cancer Research and Therapeutics, 17(1), 22–28.
  • Klaunig, E. (2018). Oxidative Stress and Cancer. Current Pharmaceutical Design, 24(40), 4771–4778. Lee, L., Huang, Y. & Shyur, F. (2013). Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxidative Medicine and Cellular Longevity, 925804.
  • Mileo, M. & Miccadei, S. (2016). Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxidative Medicine and Cellular Longevity, 6475624.
  • Milkovic, L., Siems, W., Siems, R. & Zarkovic, N. (2014). Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer. Current pharmaceutical design, 20(42), 6529–6542.
  • Obrador, E., Liu-Smith, F., Dellinger, W., Salvador, R., Meyskens, L. & Estrela, M. (2019). Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biological Chemistry, 400(5), 589–612.
  • Ohl, K. & Tenbrock, K. (2018). Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Frontiers in İmmunology, 9, 2499.
  • Sato‐Dahlman, M., Wirth, K. & Yamamoto, M. (2018). Role of genetherapy in pancreatic cancer—A review. Cancers, 10(4), 103.
  • Siegel, L., Miller, D. & Jemal, A. (2019). Cancer Statistics. CA: A Cancer Journal for Clinicians, 69(1), 7–34.
  • Starobova, H. & Vetter, I. (2017). Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Molecular Neuroscience,10, 174.
  • Tamtaji, R., Mirhosseini, N., Reiter, J., Behnamfar, M. & Asemi, Z. (2019). Melatonin and pancreatic cancer: Current knowledge and future perspectives. Journal of Cellular Physiology, 234(5), 5372–5378.
  • Thapa, D. & Ghosh, R. (2015). Chronic inflammatory mediators enhance prostate cancer development and progression. Biochemical Pharmacology, 94(2), 53–62.
  • Toyokuni, S. (2006). Novel aspects of oxidative stress-associated carcinogenesis. Antioxidants & Redox Signaling, 8(7-8), 1373–1377.
  • Wang, F., Lv, H., Zhao, B., Zhou, L., Wang, S., Luo, J., Liu, J. & Shang, P. (2019). Iron and leukemia: new insights for future treatments. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 406.
  • Valavanidis, A. & Vlachogianni, T. (2009). Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 27(2), 120–139.
  • Zhang, Y., Li, Q., Xu, D., Li, T., Gu, Z., Huang, P. & Ren, L. (2021). Idarubicin-induced oxidative stress and apoptosis in cardiomyocytes: An in vitro molecular approach. Human & Experimental Toxicology, 40(12), S553–S562.
  • Zhou, L., Zhao, B., Zhang, L., Wang, S., Dong, D., Lv, H. & Shang, P. (2018). Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. International Journal of Molecular Sciences, 19(5), 1545.
There are 24 citations in total.

Details

Primary Language English
Subjects Veterinary Biochemistry
Journal Section Review
Authors

Dilek Nur Bestil 0000-0003-1565-1466

Hamdi Uysal 0000-0002-2289-1815

Publication Date August 31, 2024
Acceptance Date March 20, 2024
Published in Issue Year 2024

Cite

APA Bestil, D. N., & Uysal, H. (2024). EFFECTS OF OXIDATIVE STRESS ON SOME CANCER TYPES AND TREATMENT APPROCHES: A REVIEW. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 15(2), 58-63. https://doi.org/10.38137/vftd.1361976