Review
BibTex RIS Cite

YARA İYILEŞMESI ARAŞTIRMALARINDA DENEYSEL HAYVAN MODELLERI: MEKANIZMALARI, UYGULAMALARI VE SINIRLILIKLARI

Year 2025, Volume: 16 Issue: 2, 74 - 86, 31.08.2025
https://doi.org/10.38137/vftd.1700094

Abstract

Deri, insan vücudunun en büyük organıdır ve su kaybı ile patojenler gibi dış tehditlere karşı alttaki dokuları koruyan kritik bir bariyer görevi görür. Ancak bu görevi yerine getirirken, sıklıkla mekanik travma, termal yanıklar, kimyasal maruziyet, iskemi ve enfeksiyonlar gibi çok çeşitli yaralanmalara maruz kalır. Bu farklı yaralanma türlerinin hayvan çalışmalarında modellenmesi, yara iyileşmesi mekanizmalarının anlaşılmasını yardım etmektedir. Bu makale, yara iyileşmesi araştırmalarında yaygın olarak kullanılan deneysel hayvan modellerine odaklanmış bir genel bakış sunmakta, bu modellerin mekanizmalarını, uygulama alanlarını ve sınırlılıklarını özetlemektedir. Kemirgenler, domuzlar ve insan dışı primatlar, çeşitli cilt yaralanmalarını taklit etmek için sıkça kullanılmakta ve doku onarımında rol oynayan hücresel ve moleküler süreçlerin ortaya çıkarılmasında temel araçlar olarak hizmet etmektedir. Standart modellere ek olarak, diyabetik, enfekte, iskemik ve immünsüprese yaralar için özel yaklaşımların yanı sıra rejeneratif tedavilerin değerlendirilmesinde kullanılan biyomateryal bazlı modeller de tartışılmaktadır. Bu derleme, Google Scholar, PubMed ve Web of Science gibi veritabanlarından elde edilen güncel yayınlara dayanmaktadır. Model seçiminde etik ilkeler, maliyet etkinliği ve translasyonel (klinikle uyumlu) geçerlilik gibi temel faktörler ele alınmaktadır. Ayrıca, yara iyileşmesinin değerlendirilmesinde global ölçekte ve Türkiye’de yaygın olarak kullanılan makroskobik gözlem, histolojik analiz, moleküler testler ve görüntüleme teknikleri gibi yerleşik yöntemler de özetlenmiştir.Son olarak, fizyolojik geçerliliği artırma ve klinik uygulamaya geçişi hızlandırma potansiyeline sahip yeni teknolojiler vurgulanmıştır.

References

  • Aljamal, D., Iyengar, P. S. & Nguyen, T. T. (2024). Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics, 16(6).
  • Apikian, M. & Goodman, G. (2004). Intralesional 5-fluorouracil in the treatment of keloid scars. Australas J Dermatol, 45(2), 140-143.
  • Appoo, A., Christensen, B. L. & Somayaji, R. (2024). Examining the Association between Immunosuppressants and Wound Healing: A Narrative Review. Adv Skin Wound Care, 37(5), 261-267.
  • Arabpour, Z., Abedi, F., Salehi, M., Baharnoori, S. M., Soleimani, M. & Djalilian, A. R. (2024). Hydrogel-Based Skin Regeneration. Int J Mol Sci, 25(4).
  • Arihan, O., Akgül, Ö., Oto, G., Yildirim, S., Eroğlu, H. & Bora, G. (2021). The effects of asphodel (Asphodelus aestivus Brot.) rhizome extract administration in the treatment of thermally induced wound in rats. Indian Journal of Pharmaceutical Education and Research, 55(2).
  • Atille, M., Kadiroğlu, E. T., Ertaş, A., Ersöz Kanay, B., Akpolat, N., Deveci, E. & Aşır, F. (2023). Mentha spicata uçucu yağ ekstresinin içerik analiziyle, sıçanlarda yara iyileşmesine etkisinin incelenmesi. Selcuk Dent J, 10(4). Au - Rhea, L. & Au - Dunnwald, M. (2020). JoVE, (162), e61616.
  • Banstola, A. & Reynolds, J. N. J. (2022). The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. Biology (Basel), 11(9).
  • Bielefeld, K. A., Amini-Nik, S. & Alman, B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci, 70(12), 2059-2081.
  • Bjarnsholt, T., Kirketerp-Møller, K., Jensen, P., Madsen, K. G., Phipps, R., Krogfelt, K., Høiby, N. & Givskov, M. (2008). Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen, 16(1), 2-10.
  • Boateng, J. S., Matthews, K. H., Stevens, H. N. & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. J Pharm Sci, 97(8), 2892-2923.
  • Bootun, R. (2013). Effects of immunosuppressive therapy on wound healing. Int Wound J, 10(1), 98-104. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. (2005). The global burden of diabetic foot disease. Lancet, 366(9498), 1719-1724.
  • Brandão, A. M., de Oliveira, M. V. M., Rocha Silvestre, G. C., Silva, A. Q., Marques, M. A., Pinheiro Palomino, S. A., Higuchi, M. L. & Simão da Silva, E. (2025). Analysis of the relationship between central adiposity and biomechanical, histological, and immunohistochemical properties of the anterior wall of abdominal aortic aneurysms. JVS Vasc Sci, 6, 100283.
  • Chittasupho, C., Manthaisong, A., Okonogi, S., Tadtong, S. & Samee, W. (2021). Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int J Mol Sci, 23(1).
  • Choudhary, V., Choudhary, M. & Bollag, W. B. (2024). Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci, 25(7).
  • Ciornei, B., Vaduva, A., Hutu, I., Lungu, B. C., Bratu, D. G., Popescu, D., David, V. L. Horhat, F. G. & Boia, E. S. (2024). Experimenting with Pig-based Skin Model for Burns. Testing of Mean Literature Findings. Chirurgia (Bucur), 119(Ahead of print), 1-10.
  • Close, D. M., Xu, T., Sayler, G. S. & Ripp, S. (2011). In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel), 11(1), 180-206.
  • Cobb, M. J., Chen, Y., Underwood, R. A., Usui, M. L., Olerud, J. & Li, X. (2006). Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J Biomed Opt, 11(6), 064002.
  • Desjardins, D. C., Parrish, R. K., 2nd, Folberg, R., Nevarez, J., Heuer, D. K. & Gressel, M. G. (1986). Wound healing after filtering surgery in owl monkeys. Arch Ophthalmol, 104(12), 1835-1839.
  • Egro, F., Repko, A., Narayanaswamy, V., Ejaz, A., Kim, D., Schusterman, M. A., Loughran, A., Ayyash, A., Towsend S. M., Baker, S., Ziembicki, J., Marra, K. & Rubin, P. (2022). Soluble chitosan derivative treats wound infections and promotes wound healing in a novel MRSA-infected porcine partial-thickness burn wound model. PLoS ONE, 17(10), e0274455.
  • Eming, S. A., Krieg, T. & Davidson, J. M. (2007). Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 127(3), 514-525.
  • Fila, G., Kasimova, K., Arenas, Y., Nakonieczna, J., Grinholc, M., Bielawski, K. P. & Lilge, L. (2016). Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy. Front Microbiol, 7, 1258.
  • Galiano, R. D., Michaels, J. t., Dobryansky, M., Levine, J. P. & Gurtner, G. C. (2004). Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen, 12(4), 485-492.
  • Gallucci, R. M., Simeonova, P. P., Matheson, J. M., Kommineni, C., Guriel, J. L., Sugawara, T. & Luster, M. I. (2000). Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. Faseb J, 14(15), 2525-2531.
  • Garner, W. L. (1998). Epidermal regulation of dermal fibroblast activity. Plast Reconstr Surg, 102(1), 135-139. Ghanbari, M., Salkovskiy, Y. & Carlson, M. A. (2024). The rat as an animal model in chronic wound research: An update. Life Sci, 351, 122783.
  • Gülbenat, Ö., Kayapınar, S. D., Çeribaşı, S., Kızıl, M. & Han, M. C. (2022). Deri yaralarında çeşitli dikiş materyallerinin yara iyileşmesi üzerine etkilerinin karşılaştırılması. Fırat Univ Sağ Bil Vet Derg, 36(2), 83–90. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321.
  • Hofmann, A. T., Slezak, P., Neumann, S., Ferguson, J., Redl, H. & Mittermayr, R. (2023). Ischemia Impaired Wound Healing Model in the Rat-Demonstrating Its Ability to Test Proangiogenic Factors. Biomedicines, 11(4).
  • Hofmann, E., Fink, J., Pignet, A.-L., Schwarz, A., Schellnegger, M., Nischwitz, S. P., Holzer-Geisler, J. C. J., Kamolz, L. P. & Kotzbeck, P. (2023). Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines, 11(4), 1056.
  • Hofmann, E., Schwarz, A., Fink, J., Kamolz, L. P. & Kotzbeck, P. (2023). Modelling the Complexity of Human Skin In Vitro. Biomedicines, 11(3).
  • Hussen, B. M., Taheri, M., Yashooa, R. K., Abdullah, G. H., Abdullah, S. R., Kheder, R. K. & Mustafa, S. A. (2024). Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg, 110(12), 8002-8024.
  • Idrus, R. B. H., Rameli, M., Cheong, L. K., Xian, L. J., Hui, C. K., Latiff, M. B. A. & Saim, A. B. (2014). Allogeneic bilayered tissue-engineered skin promotes full-thickness wound healing in ovine model. Biomed Res India, 25, 192-198.
  • Jiao, C., Xie, Y., Yun, H., Liang, H., He, C., Jiang, A., Wu, Q. & Yang, B. B. (2020). The effect of Ganodermalucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging (Albany NY), 12(14), 14125-14140.
  • Kang, M., Long, T., Chang, C., Meng, T., Ma, H., Li, Z., Li, P. & Chen, Y. (2022). A Review of the Ethical Use of Animals in Functional Experimental Research in China Based on the "Four R" Principles of Reduction, Replacement, Refinement, and Responsibility. Med Sci Monit, 28, e938807.
  • Kanji, S. & Das, H. (2017). Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm, 2017, 5217967.
  • Karakayalı, E. M., Önal, T., Öztatlıcı, M., Duruşma, R. & Karakayalı, S. (2022). Diyabetik sıçan deri yara iyileşmesinde probiyotik etkisi. CBÜ Sağlık Bilim Enst Derg, 9(1), 151–158.
  • Karner, L., Drechsler, S., Metzger, M., Slezak, P., Zipperle, J., Pinar, G., Sterflinger, K., Leisch, F., Grillari, J., Osuchowski, M. & Dungel, P. (2020). Contamination of wounds with fecal bacteria in immuno-suppressed mice. Scientific Reports, 10(1), 11494.
  • Kuo, T. Y., Huang, C. C., Shieh, S. J., Wang, Y. B., Lin, M. J., Wu, M. C. & Huang, L. L. H. (2022). Skin wound healing assessment via an optimized wound array model in miniature pigs. Scientific Reports, 12(1), 445.
  • Kwak, S., Song, C. L., Lee, J., Kim, S., Nam, S., Park, Y. J. & Lee, J. (2024). Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials, 307, 122522.
  • Lan, X., Du, T., Zhuo, J., Wang, T., Shu, R., Li, Y., Zhang, W., Ji, Y., Wang, Y., Yue, X. & Wang, J. (2024). Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol, 279(Pt 4), 135577.
  • Las Heras, K., Garcia-Orue, I., Rancan, F., Igartua, M., Santos-Vizcaino, E. & Hernandez, R. M. (2024). Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev, 210, 115342.
  • Lavers, I. (2017). Exploring skin anatomy, function and site-specific treatment options. Journal of Aesthetic Nursing, 6(4), 172-180.
  • Law, J. X., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. (2017). Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds. J Tissue Viability, 26(3), 208-215.
  • Li, D., Liu, Z., Zhang, L., Bian, X., Wu, J., Li, L., Chen, Y., Luo, L., Pan, L., Kong, L., Xiao, Y., Wang, J., Zhang, X., Wang, W., Toma, M., Piipponen, M., Sommar, P. & Xu Landén, N. (2024). The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun, 15(1), 8637.
  • Maleki Varnosfaderani, S. & Forouzanfar, M. (2024). The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel), 11(4).
  • Mamun, A. A., Shao, C., Geng, P., Wang, S. & Xiao, J. (2024). Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol, 15, 1395479.
  • Matsumoto-Oda, A., Utsumi, D., Takahashi, K., Hirata, S., Nyachieo, A., Chai, D., Jillani, N. & Raymond, M. (2025). Inter-species differences in wound-healing rate: a comparative study involving primates and rodents. Proc Biol Sci, 292(2045), 20250233.
  • Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C. & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci, 103(8), 2211-2230.
  • Mieczkowski, M., Mrozikiewicz-Rakowska, B., Kowara, M., Kleibert, M. & Czupryniak, L. (2022). The Problem of Wound Healing in Diabetes-From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci, 23(14).
  • Moroni, R. M., de Oliveira, F. C. C. & Roldan, C. J. (2023). Advances in non-invasive imaging for skin fibrosis and scarring: a review. J Biomed Opt, 28(3), 030901.
  • Mukherjee, P., Roy, S., Ghosh, D. & Nandi, S. K. (2022). Role of animal models in biomedical research: a review. Laboratory Animal Research, 38(1), 18.
  • Mund, S. J. K., MacPhee, D. J., Campbell, J., Honaramooz, A., Wobeser, B. & Barber, S. M. (2021). Macroscopic, Histologic, and Immunomodulatory Response of Limb Wounds Following Intravenous Allogeneic Cord Blood-Derived Multipotent Mesenchymal Stromal Cell Therapy in Horses. Cells, 10(11), 2972.
  • Muñoz-Torres, J. R., Garza-Veloz, I., Velasco-Elizondo, P. & Martinez-Fierro, M. L. (2025). HEALS-A and GRADES: Novel Histological and Clinical Scales for Assessing Skin Regeneration in Murine Wound Healing Models. Diagnostics (Basel), 15(3).
  • Opneja, A., Kapoor, S. & Stavrou, E. X. (2019). Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb Res, 179, 56-63.
  • Park, H., Patil, T. V., Mo, C. & Lim, K. T. (2025). Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications. J Nanobiotechnology, 23(1), 285.
  • Pascal, W., Smoliński, A., Gotowiec, M., Wojtkiewicz, M., Stachura, A., Pełka, K., Kopka, M., Quinn, K. P., Waessner, A. E., Grzelecki, D. & Włodarski, P. (2024). Pre-Incisional and Multiple Intradermal Injection of N-Acetylcysteine Slightly Improves Incisional Wound Healing in an Animal Model. Int J Mol Sci, 25(10).
  • Peña, O. A. & Martin, P. (2024). Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol, 25(8), 599-616.
  • Pereira Beserra, F., Sérgio Gushiken, L. F., Vieira, A. J., Augusto Bérgamo, D., Luísa Bérgamo, P., Oliveira de Souza, M., Husni, C. A., Takahira, R. K., Nobrera, R. H., Martinez, E. R. M., Jackson, C. J., de Azevedo Maia, G. L., Rozza, A. L. & Helena Pellizzon, C. (2020). From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers. Int J Mol Sci, 21(14).
  • Rai, V., Moellmer, R. & Agrawal, D. K. (2022). Clinically relevant experimental rodent models of diabetic foot ulcer. Mol Cell Biochem, 477(4), 1239-1247.
  • Rawat, K., Sethi, V. A. & Ali, S. S. (2024). Bridging the Gap: A Critical Analysis of Pre-Clinical Wound Healing Models for Improved Translation to Clinical Efficacy. International Journal of Newgen Research in Pharmacy & Healthcare, 135-153.
  • Reifs Jiménez, D., Casanova-Lozano, L., Grau-Carrión, S. & Reig-Bolaño, R. (2025). Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review. J Med Syst, 49(1), 29.
  • Rhett, J. M., Ghatnekar, G. S., Palatinus, J. A., O'Quinn, M., Yost, M. J. & Gourdie, R. G. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol, 26(4), 173-180.
  • Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. (2019). Wound Healing: A Cellular Perspective. Physiol Rev, 99(1), 665-706.
  • Roy, S., Santra, S., Das, A., Dixith, S., Sinha, M., Ghatak, S., Ghosh, N., Banerjee, P., Khanna, S., Mathew-Steiner, S., Ghatak, P. D., Blackstone, B. N., Powell, H. M., Bergdall, V. K., Wozniak, D. J. & Sen, C. K. (2020). Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg, 271(6), 1174-1185.
  • Russell, W. & Burch, R. (1959). The principles of humane experimental technique: London: Methuen & Co. Ltd.
  • Sami, D. G. & Abdellatif, A. (2021). Histological and clinical evaluation of wound healing in pressure ulcers: a novel animal model. J Wound Care, 30(Sup6), S12-s21.
  • Sanapalli, B. K. R., Yele, V., Singh, M. K., Thaggikuppe Krishnamurthy, P. & Karri, V. (2021). Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother, 142, 111946.
  • Schuh, S., Berger, M., Schiele, S., Rubeck, A., Müller, G., González, J. J. V., Holmes, J. & Welzel, J. (2024). Dynamic optical coherence tomography for imaging acute wound healing. Int Wound J, 21(8), e70015.
  • Shaner, S., Savelyeva, A., Kvartuh, A., Jedrusik, N., Matter, L., Leal, J. & Asplund, M. (2023). Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. Lab Chip, 23(6), 1531-1546.
  • Shaw, T. J. & Martin, P. (2009). Wound repair at a glance. J Cell Sci, 122(Pt 18), 3209-3213.
  • Smith, M. J., Dempsey, S. G., Veale, R. W., Duston-Fursman, C. G., Rayner, C. A. F., Javanapong, C., Gerneke, D., Dowling, S. G., Bosque, B. A., Karnik, T., Jeram, M. J., Nagarajan, A., Rajam, R., Jowsey, A., Cutajar, S., Mason, I., Stanley, R. G., Campbell, A., Malmstrom, J., Miller, C. H. & May, B. C. H. (2022). Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair. J Biomater Appl, 36(6), 996-1010.
  • Stewart, K. J. (1995). A quantitative ultrastructural study of collagen fibrils in human skin, normal scars, and hypertrophic scars. Clin Anat, 8(5), 334-338.
  • Subramaniam, T., Fauzi, M. B., Lokanathan, Y. & Law, J. X. (2021). The Role of Calcium in Wound Healing. Int J Mol Sci, 22(12).
  • Summer, M., Ali, S., Fiaz, U., Hussain, T., Khan, R. R. M. & Fiaz, H. (2024). Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol, 55(5), 637-654.
  • Talebi, M., Ghale, R. A., Asl, R. M. & Tabandeh, F. (2025). Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review. Carbohydrate Polymer Technologies and Applications, 9, 100706.
  • Tavecchio, M., Fanni, S., Wu, X., Petruk, G., Puthia, M. & Schmidtchen, A. (2025). A murine pressure ulcer model for evaluating persistence and treatment of Staphylococcus aureus infection. Front Med (Lausanne), 12, 1561732.
  • Teertam, S. K., Setaluri, V. & Ayuso, J. M. (2025). Advances in Microengineered Platforms for Skin Research. JID Innov, 5(1), 100315.
  • Velnar, T., Bailey, T. & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 37(5), 1528-1542.
  • Vespa, E., D'Amico, F., Sollai, M., Allocca, M., Furfaro, F., Zilli, A., Buono, A. D., Gabbiadini, R., Danese, S. & Fiorino, G. (2022). Histological Scores in Patients with Inflammatory Bowel Diseases: The State of the Art. J Clin Med, 11(4). Wang, Z., Zhao, F., Lang, H., Ren, H., Zhang, Q., Huang, X., He, C., Xu, C., Tan, C., Ma, J., Duan, S. & Wang, Z. (2025). Organoids in skin wound healing. Burns Trauma, 13, tkae077.
  • Werner, S. & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol Rev, 83(3), 835-870.
  • Wiegand, C., Fink, S., Mogrovejo, D. C., Ruhlandt, M., Wiencke, V., Eberlein, T., Brill, F. H. & Tittelbach, J. (2024). A standardized wound infection model for antimicrobial testing of wound dressings in vitro. Int Wound J, 21(3), e14811.
  • Wilgus, T. A., Roy, S. & McDaniel, J. C. (2013). Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care (New Rochelle), 2(7), 379-388.
  • Wilhelm, K. P., Wilhelm, D. & Bielfeldt, S. (2017). Models of wound healing: an emphasis on clinical studies. Skin Res Technol, 23(1), 3-12.
  • Xiao, H., Chen, X., Liu, X., Wen, G. & Yu, Y. (2023). Recent advances in decellularized biomaterials for wound healing. Mater Today Bio, 19, 100589.
  • Yu, C., Cui, L., Yang, P. & Wen, Z. (2023). Effects of Bevacizumab Injection on the Skin Wound Healing in Cynomolgus Monkeys. Laboratory Animal and Comparative Medicine, 43(1), 21-29.
  • Yuan, Z., Wang, Y., Li, Y., Lin, C., Wang, S., Wang, J., Ma, C. & Wu, S. (2023). Comparison of Leukocyte-Rich and Leukocyte-Poor Platelet-Rich Plasma on Pressure Ulcer in a Rat Model. J Burn Care Res, 44(4), 860-868.
  • Zahran, E. M., Mohyeldin, R. H., Abd El-Mordy, F. M., Maher, S. A., Abdel-Maqsoud, N. M. R., Altemani, F. H., Algehainy, N. A., Alanazi, M. A., Jalal, M. M., Elrehany, M. A., Bringmann, G. & Abdelmohsen, U. R. (2024). Wound healing potential of Cystoseira/mesenchymal stem cells in immunosuppressed rats supported by overwhelming immuno-inflammatory crosstalk. PLoS ONE, 19(4), e0300543.

EXPERIMENTAL ANIMAL MODELS IN WOUND HEALING RESEARCH: MECHANISMS, APPLICATIONS, AND LIMITATIONS

Year 2025, Volume: 16 Issue: 2, 74 - 86, 31.08.2025
https://doi.org/10.38137/vftd.1700094

Abstract

The skin is the largest organ of the human body and acts as a critical barrier, protecting underlying tissues from water loss and external threats such as pathogens. However, in performing this role, it is often exposed to a wide range of injuries - including mechanical trauma, thermal burns, chemical exposure, ischemia, and infections. Modelling these diverse injury types in animal studies enhances our understanding of wound healing mechanisms. This article presents a focused overview of commonly used experimental animal models in wound healing research, outlining their mechanisms, applications, and limitations. Rodents, pigs, and non-human primates are frequently employed to replicate different types of skin injury and are essential for uncovering the cellular and molecular processes involved in tissue repair. In addition to standard models, specialized approaches for diabetic, infected, ischemic, and immunosuppressed wounds as well as biomaterial-based models for evaluating regenerative therapies are discussed. The review is based on recent publications retrieved from databases such as Google Scholar, PubMed, and Web of Science. Key considerations in model selection such as ethical principles, cost-effectiveness, and translational relevance are examined. The review also summarizes established methods for evaluating wound healing such as macroscopic observation, histological analysis, molecular assays, and imaging techniques applied both globally and in Turkey. Finally, emerging technologies are highlighted for their potential to improve physiological relevance and accelerate clinical translation.

References

  • Aljamal, D., Iyengar, P. S. & Nguyen, T. T. (2024). Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics, 16(6).
  • Apikian, M. & Goodman, G. (2004). Intralesional 5-fluorouracil in the treatment of keloid scars. Australas J Dermatol, 45(2), 140-143.
  • Appoo, A., Christensen, B. L. & Somayaji, R. (2024). Examining the Association between Immunosuppressants and Wound Healing: A Narrative Review. Adv Skin Wound Care, 37(5), 261-267.
  • Arabpour, Z., Abedi, F., Salehi, M., Baharnoori, S. M., Soleimani, M. & Djalilian, A. R. (2024). Hydrogel-Based Skin Regeneration. Int J Mol Sci, 25(4).
  • Arihan, O., Akgül, Ö., Oto, G., Yildirim, S., Eroğlu, H. & Bora, G. (2021). The effects of asphodel (Asphodelus aestivus Brot.) rhizome extract administration in the treatment of thermally induced wound in rats. Indian Journal of Pharmaceutical Education and Research, 55(2).
  • Atille, M., Kadiroğlu, E. T., Ertaş, A., Ersöz Kanay, B., Akpolat, N., Deveci, E. & Aşır, F. (2023). Mentha spicata uçucu yağ ekstresinin içerik analiziyle, sıçanlarda yara iyileşmesine etkisinin incelenmesi. Selcuk Dent J, 10(4). Au - Rhea, L. & Au - Dunnwald, M. (2020). JoVE, (162), e61616.
  • Banstola, A. & Reynolds, J. N. J. (2022). The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. Biology (Basel), 11(9).
  • Bielefeld, K. A., Amini-Nik, S. & Alman, B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci, 70(12), 2059-2081.
  • Bjarnsholt, T., Kirketerp-Møller, K., Jensen, P., Madsen, K. G., Phipps, R., Krogfelt, K., Høiby, N. & Givskov, M. (2008). Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen, 16(1), 2-10.
  • Boateng, J. S., Matthews, K. H., Stevens, H. N. & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. J Pharm Sci, 97(8), 2892-2923.
  • Bootun, R. (2013). Effects of immunosuppressive therapy on wound healing. Int Wound J, 10(1), 98-104. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. (2005). The global burden of diabetic foot disease. Lancet, 366(9498), 1719-1724.
  • Brandão, A. M., de Oliveira, M. V. M., Rocha Silvestre, G. C., Silva, A. Q., Marques, M. A., Pinheiro Palomino, S. A., Higuchi, M. L. & Simão da Silva, E. (2025). Analysis of the relationship between central adiposity and biomechanical, histological, and immunohistochemical properties of the anterior wall of abdominal aortic aneurysms. JVS Vasc Sci, 6, 100283.
  • Chittasupho, C., Manthaisong, A., Okonogi, S., Tadtong, S. & Samee, W. (2021). Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int J Mol Sci, 23(1).
  • Choudhary, V., Choudhary, M. & Bollag, W. B. (2024). Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci, 25(7).
  • Ciornei, B., Vaduva, A., Hutu, I., Lungu, B. C., Bratu, D. G., Popescu, D., David, V. L. Horhat, F. G. & Boia, E. S. (2024). Experimenting with Pig-based Skin Model for Burns. Testing of Mean Literature Findings. Chirurgia (Bucur), 119(Ahead of print), 1-10.
  • Close, D. M., Xu, T., Sayler, G. S. & Ripp, S. (2011). In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel), 11(1), 180-206.
  • Cobb, M. J., Chen, Y., Underwood, R. A., Usui, M. L., Olerud, J. & Li, X. (2006). Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J Biomed Opt, 11(6), 064002.
  • Desjardins, D. C., Parrish, R. K., 2nd, Folberg, R., Nevarez, J., Heuer, D. K. & Gressel, M. G. (1986). Wound healing after filtering surgery in owl monkeys. Arch Ophthalmol, 104(12), 1835-1839.
  • Egro, F., Repko, A., Narayanaswamy, V., Ejaz, A., Kim, D., Schusterman, M. A., Loughran, A., Ayyash, A., Towsend S. M., Baker, S., Ziembicki, J., Marra, K. & Rubin, P. (2022). Soluble chitosan derivative treats wound infections and promotes wound healing in a novel MRSA-infected porcine partial-thickness burn wound model. PLoS ONE, 17(10), e0274455.
  • Eming, S. A., Krieg, T. & Davidson, J. M. (2007). Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 127(3), 514-525.
  • Fila, G., Kasimova, K., Arenas, Y., Nakonieczna, J., Grinholc, M., Bielawski, K. P. & Lilge, L. (2016). Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy. Front Microbiol, 7, 1258.
  • Galiano, R. D., Michaels, J. t., Dobryansky, M., Levine, J. P. & Gurtner, G. C. (2004). Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen, 12(4), 485-492.
  • Gallucci, R. M., Simeonova, P. P., Matheson, J. M., Kommineni, C., Guriel, J. L., Sugawara, T. & Luster, M. I. (2000). Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. Faseb J, 14(15), 2525-2531.
  • Garner, W. L. (1998). Epidermal regulation of dermal fibroblast activity. Plast Reconstr Surg, 102(1), 135-139. Ghanbari, M., Salkovskiy, Y. & Carlson, M. A. (2024). The rat as an animal model in chronic wound research: An update. Life Sci, 351, 122783.
  • Gülbenat, Ö., Kayapınar, S. D., Çeribaşı, S., Kızıl, M. & Han, M. C. (2022). Deri yaralarında çeşitli dikiş materyallerinin yara iyileşmesi üzerine etkilerinin karşılaştırılması. Fırat Univ Sağ Bil Vet Derg, 36(2), 83–90. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321.
  • Hofmann, A. T., Slezak, P., Neumann, S., Ferguson, J., Redl, H. & Mittermayr, R. (2023). Ischemia Impaired Wound Healing Model in the Rat-Demonstrating Its Ability to Test Proangiogenic Factors. Biomedicines, 11(4).
  • Hofmann, E., Fink, J., Pignet, A.-L., Schwarz, A., Schellnegger, M., Nischwitz, S. P., Holzer-Geisler, J. C. J., Kamolz, L. P. & Kotzbeck, P. (2023). Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines, 11(4), 1056.
  • Hofmann, E., Schwarz, A., Fink, J., Kamolz, L. P. & Kotzbeck, P. (2023). Modelling the Complexity of Human Skin In Vitro. Biomedicines, 11(3).
  • Hussen, B. M., Taheri, M., Yashooa, R. K., Abdullah, G. H., Abdullah, S. R., Kheder, R. K. & Mustafa, S. A. (2024). Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg, 110(12), 8002-8024.
  • Idrus, R. B. H., Rameli, M., Cheong, L. K., Xian, L. J., Hui, C. K., Latiff, M. B. A. & Saim, A. B. (2014). Allogeneic bilayered tissue-engineered skin promotes full-thickness wound healing in ovine model. Biomed Res India, 25, 192-198.
  • Jiao, C., Xie, Y., Yun, H., Liang, H., He, C., Jiang, A., Wu, Q. & Yang, B. B. (2020). The effect of Ganodermalucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging (Albany NY), 12(14), 14125-14140.
  • Kang, M., Long, T., Chang, C., Meng, T., Ma, H., Li, Z., Li, P. & Chen, Y. (2022). A Review of the Ethical Use of Animals in Functional Experimental Research in China Based on the "Four R" Principles of Reduction, Replacement, Refinement, and Responsibility. Med Sci Monit, 28, e938807.
  • Kanji, S. & Das, H. (2017). Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm, 2017, 5217967.
  • Karakayalı, E. M., Önal, T., Öztatlıcı, M., Duruşma, R. & Karakayalı, S. (2022). Diyabetik sıçan deri yara iyileşmesinde probiyotik etkisi. CBÜ Sağlık Bilim Enst Derg, 9(1), 151–158.
  • Karner, L., Drechsler, S., Metzger, M., Slezak, P., Zipperle, J., Pinar, G., Sterflinger, K., Leisch, F., Grillari, J., Osuchowski, M. & Dungel, P. (2020). Contamination of wounds with fecal bacteria in immuno-suppressed mice. Scientific Reports, 10(1), 11494.
  • Kuo, T. Y., Huang, C. C., Shieh, S. J., Wang, Y. B., Lin, M. J., Wu, M. C. & Huang, L. L. H. (2022). Skin wound healing assessment via an optimized wound array model in miniature pigs. Scientific Reports, 12(1), 445.
  • Kwak, S., Song, C. L., Lee, J., Kim, S., Nam, S., Park, Y. J. & Lee, J. (2024). Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials, 307, 122522.
  • Lan, X., Du, T., Zhuo, J., Wang, T., Shu, R., Li, Y., Zhang, W., Ji, Y., Wang, Y., Yue, X. & Wang, J. (2024). Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol, 279(Pt 4), 135577.
  • Las Heras, K., Garcia-Orue, I., Rancan, F., Igartua, M., Santos-Vizcaino, E. & Hernandez, R. M. (2024). Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev, 210, 115342.
  • Lavers, I. (2017). Exploring skin anatomy, function and site-specific treatment options. Journal of Aesthetic Nursing, 6(4), 172-180.
  • Law, J. X., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. (2017). Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds. J Tissue Viability, 26(3), 208-215.
  • Li, D., Liu, Z., Zhang, L., Bian, X., Wu, J., Li, L., Chen, Y., Luo, L., Pan, L., Kong, L., Xiao, Y., Wang, J., Zhang, X., Wang, W., Toma, M., Piipponen, M., Sommar, P. & Xu Landén, N. (2024). The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun, 15(1), 8637.
  • Maleki Varnosfaderani, S. & Forouzanfar, M. (2024). The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel), 11(4).
  • Mamun, A. A., Shao, C., Geng, P., Wang, S. & Xiao, J. (2024). Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol, 15, 1395479.
  • Matsumoto-Oda, A., Utsumi, D., Takahashi, K., Hirata, S., Nyachieo, A., Chai, D., Jillani, N. & Raymond, M. (2025). Inter-species differences in wound-healing rate: a comparative study involving primates and rodents. Proc Biol Sci, 292(2045), 20250233.
  • Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C. & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci, 103(8), 2211-2230.
  • Mieczkowski, M., Mrozikiewicz-Rakowska, B., Kowara, M., Kleibert, M. & Czupryniak, L. (2022). The Problem of Wound Healing in Diabetes-From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci, 23(14).
  • Moroni, R. M., de Oliveira, F. C. C. & Roldan, C. J. (2023). Advances in non-invasive imaging for skin fibrosis and scarring: a review. J Biomed Opt, 28(3), 030901.
  • Mukherjee, P., Roy, S., Ghosh, D. & Nandi, S. K. (2022). Role of animal models in biomedical research: a review. Laboratory Animal Research, 38(1), 18.
  • Mund, S. J. K., MacPhee, D. J., Campbell, J., Honaramooz, A., Wobeser, B. & Barber, S. M. (2021). Macroscopic, Histologic, and Immunomodulatory Response of Limb Wounds Following Intravenous Allogeneic Cord Blood-Derived Multipotent Mesenchymal Stromal Cell Therapy in Horses. Cells, 10(11), 2972.
  • Muñoz-Torres, J. R., Garza-Veloz, I., Velasco-Elizondo, P. & Martinez-Fierro, M. L. (2025). HEALS-A and GRADES: Novel Histological and Clinical Scales for Assessing Skin Regeneration in Murine Wound Healing Models. Diagnostics (Basel), 15(3).
  • Opneja, A., Kapoor, S. & Stavrou, E. X. (2019). Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb Res, 179, 56-63.
  • Park, H., Patil, T. V., Mo, C. & Lim, K. T. (2025). Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications. J Nanobiotechnology, 23(1), 285.
  • Pascal, W., Smoliński, A., Gotowiec, M., Wojtkiewicz, M., Stachura, A., Pełka, K., Kopka, M., Quinn, K. P., Waessner, A. E., Grzelecki, D. & Włodarski, P. (2024). Pre-Incisional and Multiple Intradermal Injection of N-Acetylcysteine Slightly Improves Incisional Wound Healing in an Animal Model. Int J Mol Sci, 25(10).
  • Peña, O. A. & Martin, P. (2024). Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol, 25(8), 599-616.
  • Pereira Beserra, F., Sérgio Gushiken, L. F., Vieira, A. J., Augusto Bérgamo, D., Luísa Bérgamo, P., Oliveira de Souza, M., Husni, C. A., Takahira, R. K., Nobrera, R. H., Martinez, E. R. M., Jackson, C. J., de Azevedo Maia, G. L., Rozza, A. L. & Helena Pellizzon, C. (2020). From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers. Int J Mol Sci, 21(14).
  • Rai, V., Moellmer, R. & Agrawal, D. K. (2022). Clinically relevant experimental rodent models of diabetic foot ulcer. Mol Cell Biochem, 477(4), 1239-1247.
  • Rawat, K., Sethi, V. A. & Ali, S. S. (2024). Bridging the Gap: A Critical Analysis of Pre-Clinical Wound Healing Models for Improved Translation to Clinical Efficacy. International Journal of Newgen Research in Pharmacy & Healthcare, 135-153.
  • Reifs Jiménez, D., Casanova-Lozano, L., Grau-Carrión, S. & Reig-Bolaño, R. (2025). Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review. J Med Syst, 49(1), 29.
  • Rhett, J. M., Ghatnekar, G. S., Palatinus, J. A., O'Quinn, M., Yost, M. J. & Gourdie, R. G. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol, 26(4), 173-180.
  • Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. (2019). Wound Healing: A Cellular Perspective. Physiol Rev, 99(1), 665-706.
  • Roy, S., Santra, S., Das, A., Dixith, S., Sinha, M., Ghatak, S., Ghosh, N., Banerjee, P., Khanna, S., Mathew-Steiner, S., Ghatak, P. D., Blackstone, B. N., Powell, H. M., Bergdall, V. K., Wozniak, D. J. & Sen, C. K. (2020). Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg, 271(6), 1174-1185.
  • Russell, W. & Burch, R. (1959). The principles of humane experimental technique: London: Methuen & Co. Ltd.
  • Sami, D. G. & Abdellatif, A. (2021). Histological and clinical evaluation of wound healing in pressure ulcers: a novel animal model. J Wound Care, 30(Sup6), S12-s21.
  • Sanapalli, B. K. R., Yele, V., Singh, M. K., Thaggikuppe Krishnamurthy, P. & Karri, V. (2021). Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother, 142, 111946.
  • Schuh, S., Berger, M., Schiele, S., Rubeck, A., Müller, G., González, J. J. V., Holmes, J. & Welzel, J. (2024). Dynamic optical coherence tomography for imaging acute wound healing. Int Wound J, 21(8), e70015.
  • Shaner, S., Savelyeva, A., Kvartuh, A., Jedrusik, N., Matter, L., Leal, J. & Asplund, M. (2023). Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. Lab Chip, 23(6), 1531-1546.
  • Shaw, T. J. & Martin, P. (2009). Wound repair at a glance. J Cell Sci, 122(Pt 18), 3209-3213.
  • Smith, M. J., Dempsey, S. G., Veale, R. W., Duston-Fursman, C. G., Rayner, C. A. F., Javanapong, C., Gerneke, D., Dowling, S. G., Bosque, B. A., Karnik, T., Jeram, M. J., Nagarajan, A., Rajam, R., Jowsey, A., Cutajar, S., Mason, I., Stanley, R. G., Campbell, A., Malmstrom, J., Miller, C. H. & May, B. C. H. (2022). Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair. J Biomater Appl, 36(6), 996-1010.
  • Stewart, K. J. (1995). A quantitative ultrastructural study of collagen fibrils in human skin, normal scars, and hypertrophic scars. Clin Anat, 8(5), 334-338.
  • Subramaniam, T., Fauzi, M. B., Lokanathan, Y. & Law, J. X. (2021). The Role of Calcium in Wound Healing. Int J Mol Sci, 22(12).
  • Summer, M., Ali, S., Fiaz, U., Hussain, T., Khan, R. R. M. & Fiaz, H. (2024). Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol, 55(5), 637-654.
  • Talebi, M., Ghale, R. A., Asl, R. M. & Tabandeh, F. (2025). Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review. Carbohydrate Polymer Technologies and Applications, 9, 100706.
  • Tavecchio, M., Fanni, S., Wu, X., Petruk, G., Puthia, M. & Schmidtchen, A. (2025). A murine pressure ulcer model for evaluating persistence and treatment of Staphylococcus aureus infection. Front Med (Lausanne), 12, 1561732.
  • Teertam, S. K., Setaluri, V. & Ayuso, J. M. (2025). Advances in Microengineered Platforms for Skin Research. JID Innov, 5(1), 100315.
  • Velnar, T., Bailey, T. & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 37(5), 1528-1542.
  • Vespa, E., D'Amico, F., Sollai, M., Allocca, M., Furfaro, F., Zilli, A., Buono, A. D., Gabbiadini, R., Danese, S. & Fiorino, G. (2022). Histological Scores in Patients with Inflammatory Bowel Diseases: The State of the Art. J Clin Med, 11(4). Wang, Z., Zhao, F., Lang, H., Ren, H., Zhang, Q., Huang, X., He, C., Xu, C., Tan, C., Ma, J., Duan, S. & Wang, Z. (2025). Organoids in skin wound healing. Burns Trauma, 13, tkae077.
  • Werner, S. & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol Rev, 83(3), 835-870.
  • Wiegand, C., Fink, S., Mogrovejo, D. C., Ruhlandt, M., Wiencke, V., Eberlein, T., Brill, F. H. & Tittelbach, J. (2024). A standardized wound infection model for antimicrobial testing of wound dressings in vitro. Int Wound J, 21(3), e14811.
  • Wilgus, T. A., Roy, S. & McDaniel, J. C. (2013). Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care (New Rochelle), 2(7), 379-388.
  • Wilhelm, K. P., Wilhelm, D. & Bielfeldt, S. (2017). Models of wound healing: an emphasis on clinical studies. Skin Res Technol, 23(1), 3-12.
  • Xiao, H., Chen, X., Liu, X., Wen, G. & Yu, Y. (2023). Recent advances in decellularized biomaterials for wound healing. Mater Today Bio, 19, 100589.
  • Yu, C., Cui, L., Yang, P. & Wen, Z. (2023). Effects of Bevacizumab Injection on the Skin Wound Healing in Cynomolgus Monkeys. Laboratory Animal and Comparative Medicine, 43(1), 21-29.
  • Yuan, Z., Wang, Y., Li, Y., Lin, C., Wang, S., Wang, J., Ma, C. & Wu, S. (2023). Comparison of Leukocyte-Rich and Leukocyte-Poor Platelet-Rich Plasma on Pressure Ulcer in a Rat Model. J Burn Care Res, 44(4), 860-868.
  • Zahran, E. M., Mohyeldin, R. H., Abd El-Mordy, F. M., Maher, S. A., Abdel-Maqsoud, N. M. R., Altemani, F. H., Algehainy, N. A., Alanazi, M. A., Jalal, M. M., Elrehany, M. A., Bringmann, G. & Abdelmohsen, U. R. (2024). Wound healing potential of Cystoseira/mesenchymal stem cells in immunosuppressed rats supported by overwhelming immuno-inflammatory crosstalk. PLoS ONE, 19(4), e0300543.
There are 85 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Review
Authors

Nazli Karimi 0000-0002-3534-6621

Okan Arıhan 0000-0001-6201-7383

Publication Date August 31, 2025
Submission Date May 16, 2025
Acceptance Date July 27, 2025
Published in Issue Year 2025 Volume: 16 Issue: 2

Cite

APA Karimi, N., & Arıhan, O. (2025). EXPERIMENTAL ANIMAL MODELS IN WOUND HEALING RESEARCH: MECHANISMS, APPLICATIONS, AND LIMITATIONS. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 16(2), 74-86. https://doi.org/10.38137/vftd.1700094