Review
BibTex RIS Cite

RUMİNANTLARDA METAN SALINIMINI AZALTMA STRATEJİLERİ

Year 2021, , 43 - 54, 07.05.2021
https://doi.org/10.38137/vftd.915977

Abstract

Küresel ısınma gezegenimizin bugünü ve geleceği için çok ciddi bir tehdittir. Çok sayıda faktörün sorumlu olduğu küresel ısınma sorununa ruminantlar da önemli katkı sağlamaktadır. Rumen fermantasyonu sonucu oluşan önemli miktarda metan gazı (CH4) yakın gelecekte insan nüfus artışına paralel olarak ruminantların da sayısının artmasıyla çok daha etkili bir sorun olacaktır. Bu nedenle son yirmi yıldır rumen fermantasyonu sırasında metan gazı oluşumunu önlemek maksadıyla çok sayıda araştırma yapılmıştır. Özellikle ikincil bitki metabolitleri, daha önceleri yem katkı maddesi olarak kullanımları yaygın olan iyonofor grubu antibiyotiklerin etkilerine benzer etkileriyle önemli bir potansiyel oluşturmaktadır. Bu derlemede rumen fermantasyonu sırasında oluşan metan gazının azaltılmasına yönelik çalışmalar incelenerek geleceğe yönelik öncelikli araştırılması gereken konular belirlenmeye çalışılmıştır.

References

  • Agarwal, N., Kamra, D.N., Chaudhary, L.C., Patra, A.K. (2006). Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. Journal of Applied Animal Research, 30(1), 1-4.
  • Alvarez-Hess, P.S., Williams, S.R.O., Jacobs, J.L., Hannah, M.C., Beauchemin, K.A., Eckard, R.J., Wales, W.J., Morris, G.L., Moate, P.J. (2019). Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. Journal of Dairy Science, 102(3), 2714-2723.
  • Asanuma, N., Iwamoto, M., Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science, 82(4), 780-787.
  • Bayaru, E., Kanda, S., Kamada, T., Itabashi, H., Andoh, S., Nishida, T., Ishida, M., Itoh, T., Nagara, K., Isobe, Y. (2001). Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Nihon Chikusan Gakkaiho, 72(2), 139-146.
  • Beauchemin, K.A., Mcginn, S.M. (2006). Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. Journal of animal science, 84(6), 1489-1496.
  • Beauchemin, K.A., Kreuzer, M., O’mara, F., Mcallister, T.A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27.
  • Benchaar, C., Pomar, C., Chiquette, J. (2001). Evaluation of diet strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science, 81, 563–574.
  • Chung, Y.H., He, M.L., Mcginn, S.M., Mcallister, T.A., Beauchemin, K.A. (2011). Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Animal Feed Science and Technology, 166, 321-329.
  • Chaucheyras, F., Fonty, G., Bertin, G., Gouet, P. (1995). Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Current Microbiology, 31(4), 201-205.
  • Cieslak, A., Szumacher-Strabel, M., Stochmal, A., Oleszek, W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7, 253-265.
  • Clark, H., Pinares-Patiño, C., De Klein, C. (2005). Methane and nitrous oxide emissions from grazed grasslands. Grassland. A Global Resource, 279-293.
  • Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.
  • Czerkawski, J.W. (1986). An Introduction to Rumen Studies. Exeter: Pergamon Press.
  • Demirtaş, A., Öztürk, H., Pişkin, İ. (2018). Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation, Ank Univ Vet Fak Derg, 65 (2), 213-217.
  • Demirtas, A., Musa, S.A.A., Pekcan, M., Salgirli Demirbas, Y., Piskin, I., Emre, B., Ozturk, H., Toprak, N.N. (2020). Effects of Cleavers (Galium aparine) and Yarrow (Achillea millefolium) Extracts on Rumen Microbial Fermentation in In-vitro Semi-Continuous Culture System (RUSITEC). Kafkas Universitesi Veteriner Fakultesi Dergisi, 26(3).
  • Doreau, M., Ferlay, A. (1995). Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science, 43(2), 97-110.
  • Eckard, R.J., Grainger, C., De Klein, C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 130(1-3), 47-56.
  • Eun, J.S., Beauchemin, K.A. (2007). Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristic. Animal Feed Science and Technology 132, 298–315. Doi: 10.1016/j.anifeedsci.2006.02.014.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of Applied Microbiology, 105(3), 770-777.
  • Grainger, C., Clarke, T., Beauchemin, K.A., Mcginn, S.M., Eckard, R.J. (2008). Supplementation with whole cottonseed reduces methane emissions and increases milk production of dairy cows offered a forage and cereal grain diet. Australian Journal of Experimental Agriculture, 48, 73–76.
  • Greathead, H. (2003). Plants and plant extracts for improving animal productivity. Proceedings of the nutrition Society, 62(2), 279-290.
  • Guan, H., Wittenberg, K.M., Ominski, K.H., Krause, D.O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84, 1896–1906.
  • Haque, N., Saraswat, M.L., Sahoo, A. (2001). Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. Indian Journal of Animal Sciences, 71, 797–799.
  • Haque, M.N. (2018). Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. Journal of animal science and technology, 60(1), 15.
  • Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Diaz, T.E., Kreuzer, M. (2003). Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogenturnover and methanogenesis. Australian Journal of Agricultural Research, 54, 703–713.
  • Hungate, R.E., Mah, R.A., Simesen, M. (1961). Rates of production of individual volatile fatty acids in the rumen of lactating cows. Appl Microbiol, 9, 554–561.
  • Johnson, K.A., Johnson, D.E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
  • Jalc, D., Ceresnakova, Z. (2002). Effect of plant oils and malate on rumen fermentation in vitro. Czech J Anim Sci, 47, 106–111.
  • Kamra, D.N. (2005). Rumen microbial ecosystem. Curr. Sci. India, 89: 124-135.
  • Latham, E.A., Pinchak, W.E., Trachsel, J., Allen, H.K., Callaway, T.R., Nisbet, D.J., Anderson, R.C. (2018). Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety. Bioresource Technology, 263, 358-364.
  • Lila, Z.A., Mohammed, N., Yasui, T., Kurokawa, Y., Kanda, S., Itabashi, H. (2004). Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. Journal of Animal Science, 82(6), 1847-1854.
  • Lovett, D.K., Lovell, S., Stack, L., Callan, J., Finlay, M., Conolly, J. (2003). Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 84, 135–146.
  • Machmuller, A., Kreuzer, M.C.J.A.S. (1999). Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science, 79(1), 65-72.
  • Machmuller, A., Soliva, C.R., Kreuzer, M. (2003). Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. British Journal of Nutrition, 90(3), 529-540.
  • McAllister, T.A., Cheng, K.J., Okine, E.K., Mathison, G.W. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76(2), 231-243.
  • McAllister, T.A., Newbold, C.J. (2008). Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48(2), 7-13.
  • McGinn, S.M., Beauchemin, K.A., Coates, T., Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346–3356.
  • Maia, M.R., Chaudhary, L.C., Figueres, L., Wallace, R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91(4), 303-314.
  • Mary, W., Crombie, L., Crombie, L. (1986). Distribution of avenacins A-1, A-2, B-1 and B-2 in oat roots: Their fungicidal activity towards ‘take-all’fungus. Phytochemistry, 25(9), 2069-2073.
  • Mohammed, N., Lila, Z.A., Ajisaka, N., Hara, K., Mikuni, K., Hara, K., Kanda, S., Itabashi, H. (2004). Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition, 88(5-6), 188-195.
  • Nagaraja, T.G., Newbold, C.J., Van Nevel, C.J., Demeyer, D.I. (1997). Manipulation of ruminal fermentation. In The rumen microbial ecosystem (pp. 523-632). Springer, Dordrecht.
  • Newbold, C.J., De La Fuente, G., Belanche, A., Ramos-Morales, E., Mcewan, N.R. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1313.
  • Oeztuerk, H. (2009). Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. Journal of Animal and Feed Sciences, 18(1), 142-150.
  • Öztürk, H. (2007). Küresel ısınmada ruminantların rolü. Vet Hek Der Derg, 78(1), 17-21.
  • Öztürk, H., Demirbaş, Y.S., Aydin, F.G., Pişkin, İ., Ünler, F.M., Emre, M.B. (2015). Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semicontinuous culture system (Rusitec). Turkish Journal of Veterinary and Animal Sciences, 39(5), 556-559.
  • Patra, A.K., Kamra, D.N., Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128, 276–291.
  • Patra, A.K., Saxena, J. (2009). The effect and mode of action of saponins on microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204-219.
  • Patra, A.K. (2012). An overview of antimicrobial properties of different classes of phytochemicals. Dietary Phytochemicals and Microbes, 1-32.
  • Patra, A.K., Yu, Z. (2014). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein degrading microorganisms of the rumen. Applied Microbiology and Biotechnology, 98(2), 897-905.
  • Parry, M., Parry, M.L., Canziani, O., Palutikof, J., Van Der Linden, P., Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press. Pinares-Patiño, C.S., Ulyatt, M.J., Lassey, K.R., Barry, T. N., Holmes, C.W. (2003). Persistence of differences between sheep in methane emission under generous grazing conditions. The Journal of Agricultural Science, 140(2), 227-233.
  • Sauer, F.D., Fellner, V., Kinsman, R., Kramer, J.K.G., Jackson, H.A., Lee, A.J., Chen, S. (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. Journal of Animal Science, 76(3), 906-914.
  • Singh, B.R., Singh, O. (2012). Study of impacts of global warming on climate change: rise in sea level and disaster frequency. Global warming-impacts and future perspective.
  • Shimojo, M., Bungo, T., Imura, Y., Tobisa, M., Furuse, M., Masuda, Y., Yasukatsu, Y., Yutaka, N., Tao, S., Muhammad, Y., Goto, I. (2000). Basic avoidance of food competition among ruminants, non-ruminants and humans-A simple analytic description. Journal-Faculty of Agriculture Kyushu University, 44(3/4), 293-298.
  • Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
  • Tamminga, S., Bannink, A., Dijkstra, J., Zom, R.L.G. (2007). Feeding strategies to reduce methane loss in cattle. Animal Sciences Group, 34.
  • Ünver, E., Okur, A.A., Tahtabiçen, E., Kara, B., Şamli, H.E. (2014). Tannins and their impacts on animal nutrition. Turkish Journal of Agriculture-Food Science and Technology, 2(6), 263-267.
  • Waghorn, G.C., Mcnabb, W.C. (2003). Consequences of plant phenolic compounds for productivity and health of ruminants. Proceedings of the Nutrition Society, 62(2), 383-392.
  • Wright, A.D.G., Kennedy, P., O’neill, C.J., Toovey, A.F., Popovski, S., Rea, S.M., Pimm, C.L., Klein, L. (2004). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 22(29-30), 3976-3985.
  • Van Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R.A., (2010). Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci, 93, 5856–5866. Doi: 10.3168/jds.2010-3281.
  • Vet, L.G.R.P.M., Vet, F.S.M.M., Vet, MM. C.M., Júnior, R.G., Vet, T.R.T.M., Pharm, L.G.R., St, M.V. (2015). Enteric methane mitigation strategies in ruminants: a review/Estrategias de mitigación de metano enterico en rumiantes: revision de literatura/Estratégias de mitigação de metano entérico em ruminantes: revisão de literatura. Revista Colombiana de Ciencias Pecuarias, 28(2), 124.

METHANE MITIGATION STRATEGIES IN RUMINANTS

Year 2021, , 43 - 54, 07.05.2021
https://doi.org/10.38137/vftd.915977

Abstract

Global warming is a significant challenge to our planet's present and future. Although global warming is caused by a variety of factors, ruminants also contribute significantly to the challenge. As the number of ruminants grows in tandem with the human population, the considerable amount of methane gas (CH4) produced as a result of rumen fermentation will become a much more serious problem in the near future. Thus, several studies have been performed over the last two decades in order to avoid methane gas formation during rumen fermentation. Secondary plant metabolites, in particular, have a lot of potential thanks to their effects are comparable to those of ionophore group antibiotics, which were once used as feed additives. In this study, experiments aimed at mitigating methane gas produced during rumen fermentation were reviewed, and priority issues that should be explored in the future were identified.

References

  • Agarwal, N., Kamra, D.N., Chaudhary, L.C., Patra, A.K. (2006). Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. Journal of Applied Animal Research, 30(1), 1-4.
  • Alvarez-Hess, P.S., Williams, S.R.O., Jacobs, J.L., Hannah, M.C., Beauchemin, K.A., Eckard, R.J., Wales, W.J., Morris, G.L., Moate, P.J. (2019). Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. Journal of Dairy Science, 102(3), 2714-2723.
  • Asanuma, N., Iwamoto, M., Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science, 82(4), 780-787.
  • Bayaru, E., Kanda, S., Kamada, T., Itabashi, H., Andoh, S., Nishida, T., Ishida, M., Itoh, T., Nagara, K., Isobe, Y. (2001). Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Nihon Chikusan Gakkaiho, 72(2), 139-146.
  • Beauchemin, K.A., Mcginn, S.M. (2006). Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. Journal of animal science, 84(6), 1489-1496.
  • Beauchemin, K.A., Kreuzer, M., O’mara, F., Mcallister, T.A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27.
  • Benchaar, C., Pomar, C., Chiquette, J. (2001). Evaluation of diet strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science, 81, 563–574.
  • Chung, Y.H., He, M.L., Mcginn, S.M., Mcallister, T.A., Beauchemin, K.A. (2011). Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Animal Feed Science and Technology, 166, 321-329.
  • Chaucheyras, F., Fonty, G., Bertin, G., Gouet, P. (1995). Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Current Microbiology, 31(4), 201-205.
  • Cieslak, A., Szumacher-Strabel, M., Stochmal, A., Oleszek, W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7, 253-265.
  • Clark, H., Pinares-Patiño, C., De Klein, C. (2005). Methane and nitrous oxide emissions from grazed grasslands. Grassland. A Global Resource, 279-293.
  • Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.
  • Czerkawski, J.W. (1986). An Introduction to Rumen Studies. Exeter: Pergamon Press.
  • Demirtaş, A., Öztürk, H., Pişkin, İ. (2018). Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation, Ank Univ Vet Fak Derg, 65 (2), 213-217.
  • Demirtas, A., Musa, S.A.A., Pekcan, M., Salgirli Demirbas, Y., Piskin, I., Emre, B., Ozturk, H., Toprak, N.N. (2020). Effects of Cleavers (Galium aparine) and Yarrow (Achillea millefolium) Extracts on Rumen Microbial Fermentation in In-vitro Semi-Continuous Culture System (RUSITEC). Kafkas Universitesi Veteriner Fakultesi Dergisi, 26(3).
  • Doreau, M., Ferlay, A. (1995). Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science, 43(2), 97-110.
  • Eckard, R.J., Grainger, C., De Klein, C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 130(1-3), 47-56.
  • Eun, J.S., Beauchemin, K.A. (2007). Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristic. Animal Feed Science and Technology 132, 298–315. Doi: 10.1016/j.anifeedsci.2006.02.014.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of Applied Microbiology, 105(3), 770-777.
  • Grainger, C., Clarke, T., Beauchemin, K.A., Mcginn, S.M., Eckard, R.J. (2008). Supplementation with whole cottonseed reduces methane emissions and increases milk production of dairy cows offered a forage and cereal grain diet. Australian Journal of Experimental Agriculture, 48, 73–76.
  • Greathead, H. (2003). Plants and plant extracts for improving animal productivity. Proceedings of the nutrition Society, 62(2), 279-290.
  • Guan, H., Wittenberg, K.M., Ominski, K.H., Krause, D.O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84, 1896–1906.
  • Haque, N., Saraswat, M.L., Sahoo, A. (2001). Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. Indian Journal of Animal Sciences, 71, 797–799.
  • Haque, M.N. (2018). Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. Journal of animal science and technology, 60(1), 15.
  • Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Diaz, T.E., Kreuzer, M. (2003). Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogenturnover and methanogenesis. Australian Journal of Agricultural Research, 54, 703–713.
  • Hungate, R.E., Mah, R.A., Simesen, M. (1961). Rates of production of individual volatile fatty acids in the rumen of lactating cows. Appl Microbiol, 9, 554–561.
  • Johnson, K.A., Johnson, D.E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
  • Jalc, D., Ceresnakova, Z. (2002). Effect of plant oils and malate on rumen fermentation in vitro. Czech J Anim Sci, 47, 106–111.
  • Kamra, D.N. (2005). Rumen microbial ecosystem. Curr. Sci. India, 89: 124-135.
  • Latham, E.A., Pinchak, W.E., Trachsel, J., Allen, H.K., Callaway, T.R., Nisbet, D.J., Anderson, R.C. (2018). Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety. Bioresource Technology, 263, 358-364.
  • Lila, Z.A., Mohammed, N., Yasui, T., Kurokawa, Y., Kanda, S., Itabashi, H. (2004). Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. Journal of Animal Science, 82(6), 1847-1854.
  • Lovett, D.K., Lovell, S., Stack, L., Callan, J., Finlay, M., Conolly, J. (2003). Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 84, 135–146.
  • Machmuller, A., Kreuzer, M.C.J.A.S. (1999). Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science, 79(1), 65-72.
  • Machmuller, A., Soliva, C.R., Kreuzer, M. (2003). Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. British Journal of Nutrition, 90(3), 529-540.
  • McAllister, T.A., Cheng, K.J., Okine, E.K., Mathison, G.W. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76(2), 231-243.
  • McAllister, T.A., Newbold, C.J. (2008). Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48(2), 7-13.
  • McGinn, S.M., Beauchemin, K.A., Coates, T., Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346–3356.
  • Maia, M.R., Chaudhary, L.C., Figueres, L., Wallace, R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91(4), 303-314.
  • Mary, W., Crombie, L., Crombie, L. (1986). Distribution of avenacins A-1, A-2, B-1 and B-2 in oat roots: Their fungicidal activity towards ‘take-all’fungus. Phytochemistry, 25(9), 2069-2073.
  • Mohammed, N., Lila, Z.A., Ajisaka, N., Hara, K., Mikuni, K., Hara, K., Kanda, S., Itabashi, H. (2004). Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition, 88(5-6), 188-195.
  • Nagaraja, T.G., Newbold, C.J., Van Nevel, C.J., Demeyer, D.I. (1997). Manipulation of ruminal fermentation. In The rumen microbial ecosystem (pp. 523-632). Springer, Dordrecht.
  • Newbold, C.J., De La Fuente, G., Belanche, A., Ramos-Morales, E., Mcewan, N.R. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1313.
  • Oeztuerk, H. (2009). Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. Journal of Animal and Feed Sciences, 18(1), 142-150.
  • Öztürk, H. (2007). Küresel ısınmada ruminantların rolü. Vet Hek Der Derg, 78(1), 17-21.
  • Öztürk, H., Demirbaş, Y.S., Aydin, F.G., Pişkin, İ., Ünler, F.M., Emre, M.B. (2015). Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semicontinuous culture system (Rusitec). Turkish Journal of Veterinary and Animal Sciences, 39(5), 556-559.
  • Patra, A.K., Kamra, D.N., Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128, 276–291.
  • Patra, A.K., Saxena, J. (2009). The effect and mode of action of saponins on microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204-219.
  • Patra, A.K. (2012). An overview of antimicrobial properties of different classes of phytochemicals. Dietary Phytochemicals and Microbes, 1-32.
  • Patra, A.K., Yu, Z. (2014). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein degrading microorganisms of the rumen. Applied Microbiology and Biotechnology, 98(2), 897-905.
  • Parry, M., Parry, M.L., Canziani, O., Palutikof, J., Van Der Linden, P., Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press. Pinares-Patiño, C.S., Ulyatt, M.J., Lassey, K.R., Barry, T. N., Holmes, C.W. (2003). Persistence of differences between sheep in methane emission under generous grazing conditions. The Journal of Agricultural Science, 140(2), 227-233.
  • Sauer, F.D., Fellner, V., Kinsman, R., Kramer, J.K.G., Jackson, H.A., Lee, A.J., Chen, S. (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. Journal of Animal Science, 76(3), 906-914.
  • Singh, B.R., Singh, O. (2012). Study of impacts of global warming on climate change: rise in sea level and disaster frequency. Global warming-impacts and future perspective.
  • Shimojo, M., Bungo, T., Imura, Y., Tobisa, M., Furuse, M., Masuda, Y., Yasukatsu, Y., Yutaka, N., Tao, S., Muhammad, Y., Goto, I. (2000). Basic avoidance of food competition among ruminants, non-ruminants and humans-A simple analytic description. Journal-Faculty of Agriculture Kyushu University, 44(3/4), 293-298.
  • Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
  • Tamminga, S., Bannink, A., Dijkstra, J., Zom, R.L.G. (2007). Feeding strategies to reduce methane loss in cattle. Animal Sciences Group, 34.
  • Ünver, E., Okur, A.A., Tahtabiçen, E., Kara, B., Şamli, H.E. (2014). Tannins and their impacts on animal nutrition. Turkish Journal of Agriculture-Food Science and Technology, 2(6), 263-267.
  • Waghorn, G.C., Mcnabb, W.C. (2003). Consequences of plant phenolic compounds for productivity and health of ruminants. Proceedings of the Nutrition Society, 62(2), 383-392.
  • Wright, A.D.G., Kennedy, P., O’neill, C.J., Toovey, A.F., Popovski, S., Rea, S.M., Pimm, C.L., Klein, L. (2004). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 22(29-30), 3976-3985.
  • Van Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R.A., (2010). Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci, 93, 5856–5866. Doi: 10.3168/jds.2010-3281.
  • Vet, L.G.R.P.M., Vet, F.S.M.M., Vet, MM. C.M., Júnior, R.G., Vet, T.R.T.M., Pharm, L.G.R., St, M.V. (2015). Enteric methane mitigation strategies in ruminants: a review/Estrategias de mitigación de metano enterico en rumiantes: revision de literatura/Estratégias de mitigação de metano entérico em ruminantes: revisão de literatura. Revista Colombiana de Ciencias Pecuarias, 28(2), 124.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Review
Authors

Gürsel Gur 0000-0002-9095-9965

Hakan Öztürk 0000-0003-2913-2069

Publication Date May 7, 2021
Acceptance Date May 5, 2021
Published in Issue Year 2021

Cite

APA Gur, G., & Öztürk, H. (2021). RUMİNANTLARDA METAN SALINIMINI AZALTMA STRATEJİLERİ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 12(1), 43-54. https://doi.org/10.38137/vftd.915977