Research Article
BibTex RIS Cite

Scanning Electron Microscopic Examination of Rainbow Trout Gastrointestinal Mucosa

Year 2023, , 1 - 7, 31.12.2023
https://doi.org/10.61262/vetjku.1375634

Abstract

Aim to study: The aim of this study was to determine the morphological characteristics of the gastrointestinal mucosa of the rainbow trout.
Material and methods: This study was carried out on 10 rainbow trout's stomach and intestinal tissues using scanning electron microscope. In the study, 2.5% glutaraldehyde fixation and routine scanning electron microscopy procedures were applied.
Results: The surface architecture of the gastrointestinal tract was examined in detail. It was observed that the mucosal folds in the stomach increased in number towards the pyloric region and were arranged in a configuration that allowed food to be directed to the intestine. The columnar cells of the digestive tract mucosa and the mucosal openings that allow mucus secretion were shown in detail.
Conclusion: The gastrointestinal tract of trout, a carnivorous species, was studied in detail. The structure of the columnar cells, gastric glands and mucus openings of this system was revealed in three dimensions. The detailed anatomy of the mucosal surface, which is rapidly affected by food variation or pathological changes in fish, was revealed. This study will shed light on studies affecting the morphology of the digestive system.

References

  • Abbate, F., Germanà, G. P., De Carlos, F., Montalbano, G., Laurà, R., Levanti, M. B., & Germanà, A. (2006). The oral cavity of the adult zebrafish (Danio rerio). Anatomia, Histologia, Embryologia, 35, 299–304. https://doi.org/10.1111/j.1439-0264.2006.00682.x
  • Abbate, F., Guerrera, M. C., Montalbano, G., Ciriaco, E., & Germana, A. (2012a). Morphology of the tongue dorsal surface of gilthead seabream (Sparus aurata). Microscopy Research & Technique, 75, 1666–1671. https://doi.org/10.1002/jemt.22114
  • Abbate, F., Guerrera, M. C., Montalbano, G., De Carlos, F., Suarez, A. A., Ciriaco, E., & Germana, A. (2012b). Morphology of the European sea bass (Dicentrarchuslabrax) tongue. Microscopy Research & Technique, 75, 643–649. https://doi.org/10.1002/jemt.21105
  • Alves, A. P. C., Pereira, R. T., & Rosa, P. V. (2021). Morphology of the digestive system in carnivorous freshwater dourado Salminus brasiliensis. Journal of Fish Biology, 99, 1222–1235. https://doi.org/10.1111/jfb.14821
  • Barker, N., van Oudenaarden, A., & Clevers, H. (2012). Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell, 11(4), 452-460. https://doi.org/10.1016/j.stem.2012.09.009
  • Bond, C. E. (1979). Feeding and nutrition: Biology of Fishes. Saunders college publishing, pp. 391–405. Crawford, S. S., & Muir, A. M. (2008). Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Reviews in Fish Biology and Fisheries, 18, 313–344.
  • De Felice, E., Palladino, A., Tardella, F. M., Giaquinto, D., Barone, C. M. A., Crasto, A., & Scocco, P. (2021). A morphological, glycohistochemical and ultrastructural study on the stomach of adult Rainbow trout Oncorhynchus mykiss. The European Zoological Journal, 88(1), 269-278. https://doi.org/10.108024750263.2021.1881630
  • Demirci, B., Terzi, F., Kesbic, O. S., Acar, U., Yilmaz, S., & Kesbic, F. I. (2021). Does dietary incorporation level of pea protein isolate influence the digestive system morphology in rainbow trout (Oncorhynchus mykiss)?. Anatomia, Histologia, Embryologia, 50(6), 956-964. https://doi.org/10.1111/ahe.12740
  • El Bakary, N. E. R. (2011). Comparative scanning electron microscope study of thebuccal cavity in Juvenile and adult sea bass (Dicentrachus labrax). World Applied Sciences Journal, 12, 1133–1138.
  • Elia, A. C., Capucchio, M. T., Caldaroni, B., Magara, G., Dörr, A. J. M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A. & Gasco, L. (2018). Influence of hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496, 50–57. https://doi.org/10.1016/j.aquaculture.2018.07.009
  • Ezeasor, D. N. (1982). Distribution and ultrastructure of taste buds in the oropharyngeal cavity of the rainbow trout, Salmo gairdneri. Journal of Fish Biology, 20, 53–68. https://doi.org/10.1111/j.1095-8649.1982.tb03894.x
  • Fagundes, K. R. C., Rotundo, M. M., & Mari, R. B. (2016). Morphological and histochemical characterization of the digestive tract of the puffer fish Sphoeroides testudineus (Linnaeus 1758) (Tetraodontiformes: Tetraodontidae). Anais da Academia Brasileira de Ciências, 88, 1615–1624. https://doi.org/10.1590/0001-3765201620150167
  • Farrag, M. G., Azab, D. M., & Alabssawy, A. N. (2020). Comparative study on the histochemical structures of stomach, pyloric caeca and anterior intestine in the grey mullet, Mugil cephalus (Linnaeus, 1758). Egyptian Journal of Aquatic Biology and Fisheries, 24, 1055–1071. https:// doi.org/10.21608/ejabf.2020.132888
  • Flores, E. M., Nguyen, A. T., Odem, M. A., Eisenhoffer, G. T., & Krachler, A. M. (2020). The zebrafish as a model for gastrointestinal tract–microbe interactions. Cellular Microbiology, 22(3), e13152. https://doi.org/10.1111/cmi.13152 Guerrera, M. C., Montalbano, G., Germanà, A., Maricchiolo, G., Ciriaco, E., & Abbate, F. (2015). Morphology of the tongue dorsal surface in white sea bream (Diplodussargus sargus). Acta Zoologica, 96, 236–241. https://doi.org/10.1111/azo.12071
  • Harabawy, A. S. A., Mekkawy, I. A. A., Mahmoud, U. M., Abdel-Rahman, G. H., & Khider, B. M. (2008). Surface architecture of the oropharyngeal cavity and the digestivetract of Bagrus docmak (Forsskal, 1775) and Clarias gariepinus (Burchell, 1822) (Teleostei) from the Nile River: a scanning electron microscope study. Tissue and Cell, 48(6), 624-633. https://doi.org/10.1016/j.tice.2016.09.001
  • Johnson, K. S., & Clements, K. D. (2022). Histology and ultrastructure of the gastrointestinal tract in four temperate marine herbivorous fishes. Journal of Morphology, 283, 16–34. https://doi.org/10.1002/jmor.21424
  • Li, Y., Kortner, T. M., Chikwati, E. M., Munang’andu, H. M., Lock, E. J., & Krogdahl, Å. (2019). Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish Shellfish Immunology, 86, 1106–1113. https://doi.org/10.1016/j.fsi.2018.12.057
  • Mahmoud, U. M., Essa, F., & Sayed, A. E. D. H. (2016). Surface architecture of the oropharyngeal cavity and the digestive tract of Mulloidichthys flavolineatus from the red sea, Egypt: A scanning electron microscope study. Tissue and Cell, 48(6), 624-633. https://doi.org/10.1016/j.tice.2016.09.001
  • Okuthe, G. E., & Bhomela, B. (2021). Morphology, histology and histochemistry of the digestive tract of the Banded tilapia, Tilapia sparrmanii (Perciformes: Cichlidae). Zoologia, 37.e51043. https://doi.org/10.3897/zoologia.37.e51043
  • Pedini V., Dall’Aglio C., Parillo F., & Scocco P. (2005). Glycoconjugate distribution in gastric fundic mucosa of Umbrina cirrosa L. revealed by lectin histochemistry. Journal of Fish Biology, 66, 222–229. https://doi.org/10.1111/j.0022-1112.2005.00596.x
  • Ray, A. K., & Ringø, E. (2014). The gastrointestinal tract of fish. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 41, 1–13. https://doi.org/10.1002/9781118897263.ch1
  • Sharba, S., Sundh, H., Sundell, K., Benktander, J., Santos, L., Birchenough, G., & Lindén, S. K. (2022). Rainbow trout gastrointestinal mucus, mucin production, mucin glycosylation and response to lipopolysaccharide. Fish & Shellfish Immunology, 122, 181-190. https://doi.org/10.1016/j.fsi.2022.01.031
  • Stevens, C. E., & Hume, I. D. (2004). Comparative Physiology of the Vertebrate Digestive System: Cambridge University Press. Cambridge, UK.
  • Stosik, M., Tokarz-Deptuła, B., & Deptuła, W. (2023). Immunity of the intestinal mucosa in teleost fish. Fish & Shellfish Immunology, 108572. https://doi.org/10.1016/j.fsi.2023.108572
  • Verdile, N., Mirmahmoudi, R., Brevini, T. A. L., & Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal, 3(12), 2830-2839. https://doi.org/10.1017/S1751731119001319
  • Whitehead, P. (1977). How Fishes Live. Galley Press. An Imprint of W. H. Smith and Son Limited, England.
  • Wilson J. M., & Castro L. F. C. (2010). Morphological diversity of the gastrointestinal tract in fishes. Fish Physiology, 30, 1–55. https://doi.org/10.1016/S1546-5098(10)03001-3
Year 2023, , 1 - 7, 31.12.2023
https://doi.org/10.61262/vetjku.1375634

Abstract

References

  • Abbate, F., Germanà, G. P., De Carlos, F., Montalbano, G., Laurà, R., Levanti, M. B., & Germanà, A. (2006). The oral cavity of the adult zebrafish (Danio rerio). Anatomia, Histologia, Embryologia, 35, 299–304. https://doi.org/10.1111/j.1439-0264.2006.00682.x
  • Abbate, F., Guerrera, M. C., Montalbano, G., Ciriaco, E., & Germana, A. (2012a). Morphology of the tongue dorsal surface of gilthead seabream (Sparus aurata). Microscopy Research & Technique, 75, 1666–1671. https://doi.org/10.1002/jemt.22114
  • Abbate, F., Guerrera, M. C., Montalbano, G., De Carlos, F., Suarez, A. A., Ciriaco, E., & Germana, A. (2012b). Morphology of the European sea bass (Dicentrarchuslabrax) tongue. Microscopy Research & Technique, 75, 643–649. https://doi.org/10.1002/jemt.21105
  • Alves, A. P. C., Pereira, R. T., & Rosa, P. V. (2021). Morphology of the digestive system in carnivorous freshwater dourado Salminus brasiliensis. Journal of Fish Biology, 99, 1222–1235. https://doi.org/10.1111/jfb.14821
  • Barker, N., van Oudenaarden, A., & Clevers, H. (2012). Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell, 11(4), 452-460. https://doi.org/10.1016/j.stem.2012.09.009
  • Bond, C. E. (1979). Feeding and nutrition: Biology of Fishes. Saunders college publishing, pp. 391–405. Crawford, S. S., & Muir, A. M. (2008). Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Reviews in Fish Biology and Fisheries, 18, 313–344.
  • De Felice, E., Palladino, A., Tardella, F. M., Giaquinto, D., Barone, C. M. A., Crasto, A., & Scocco, P. (2021). A morphological, glycohistochemical and ultrastructural study on the stomach of adult Rainbow trout Oncorhynchus mykiss. The European Zoological Journal, 88(1), 269-278. https://doi.org/10.108024750263.2021.1881630
  • Demirci, B., Terzi, F., Kesbic, O. S., Acar, U., Yilmaz, S., & Kesbic, F. I. (2021). Does dietary incorporation level of pea protein isolate influence the digestive system morphology in rainbow trout (Oncorhynchus mykiss)?. Anatomia, Histologia, Embryologia, 50(6), 956-964. https://doi.org/10.1111/ahe.12740
  • El Bakary, N. E. R. (2011). Comparative scanning electron microscope study of thebuccal cavity in Juvenile and adult sea bass (Dicentrachus labrax). World Applied Sciences Journal, 12, 1133–1138.
  • Elia, A. C., Capucchio, M. T., Caldaroni, B., Magara, G., Dörr, A. J. M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A. & Gasco, L. (2018). Influence of hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496, 50–57. https://doi.org/10.1016/j.aquaculture.2018.07.009
  • Ezeasor, D. N. (1982). Distribution and ultrastructure of taste buds in the oropharyngeal cavity of the rainbow trout, Salmo gairdneri. Journal of Fish Biology, 20, 53–68. https://doi.org/10.1111/j.1095-8649.1982.tb03894.x
  • Fagundes, K. R. C., Rotundo, M. M., & Mari, R. B. (2016). Morphological and histochemical characterization of the digestive tract of the puffer fish Sphoeroides testudineus (Linnaeus 1758) (Tetraodontiformes: Tetraodontidae). Anais da Academia Brasileira de Ciências, 88, 1615–1624. https://doi.org/10.1590/0001-3765201620150167
  • Farrag, M. G., Azab, D. M., & Alabssawy, A. N. (2020). Comparative study on the histochemical structures of stomach, pyloric caeca and anterior intestine in the grey mullet, Mugil cephalus (Linnaeus, 1758). Egyptian Journal of Aquatic Biology and Fisheries, 24, 1055–1071. https:// doi.org/10.21608/ejabf.2020.132888
  • Flores, E. M., Nguyen, A. T., Odem, M. A., Eisenhoffer, G. T., & Krachler, A. M. (2020). The zebrafish as a model for gastrointestinal tract–microbe interactions. Cellular Microbiology, 22(3), e13152. https://doi.org/10.1111/cmi.13152 Guerrera, M. C., Montalbano, G., Germanà, A., Maricchiolo, G., Ciriaco, E., & Abbate, F. (2015). Morphology of the tongue dorsal surface in white sea bream (Diplodussargus sargus). Acta Zoologica, 96, 236–241. https://doi.org/10.1111/azo.12071
  • Harabawy, A. S. A., Mekkawy, I. A. A., Mahmoud, U. M., Abdel-Rahman, G. H., & Khider, B. M. (2008). Surface architecture of the oropharyngeal cavity and the digestivetract of Bagrus docmak (Forsskal, 1775) and Clarias gariepinus (Burchell, 1822) (Teleostei) from the Nile River: a scanning electron microscope study. Tissue and Cell, 48(6), 624-633. https://doi.org/10.1016/j.tice.2016.09.001
  • Johnson, K. S., & Clements, K. D. (2022). Histology and ultrastructure of the gastrointestinal tract in four temperate marine herbivorous fishes. Journal of Morphology, 283, 16–34. https://doi.org/10.1002/jmor.21424
  • Li, Y., Kortner, T. M., Chikwati, E. M., Munang’andu, H. M., Lock, E. J., & Krogdahl, Å. (2019). Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish Shellfish Immunology, 86, 1106–1113. https://doi.org/10.1016/j.fsi.2018.12.057
  • Mahmoud, U. M., Essa, F., & Sayed, A. E. D. H. (2016). Surface architecture of the oropharyngeal cavity and the digestive tract of Mulloidichthys flavolineatus from the red sea, Egypt: A scanning electron microscope study. Tissue and Cell, 48(6), 624-633. https://doi.org/10.1016/j.tice.2016.09.001
  • Okuthe, G. E., & Bhomela, B. (2021). Morphology, histology and histochemistry of the digestive tract of the Banded tilapia, Tilapia sparrmanii (Perciformes: Cichlidae). Zoologia, 37.e51043. https://doi.org/10.3897/zoologia.37.e51043
  • Pedini V., Dall’Aglio C., Parillo F., & Scocco P. (2005). Glycoconjugate distribution in gastric fundic mucosa of Umbrina cirrosa L. revealed by lectin histochemistry. Journal of Fish Biology, 66, 222–229. https://doi.org/10.1111/j.0022-1112.2005.00596.x
  • Ray, A. K., & Ringø, E. (2014). The gastrointestinal tract of fish. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 41, 1–13. https://doi.org/10.1002/9781118897263.ch1
  • Sharba, S., Sundh, H., Sundell, K., Benktander, J., Santos, L., Birchenough, G., & Lindén, S. K. (2022). Rainbow trout gastrointestinal mucus, mucin production, mucin glycosylation and response to lipopolysaccharide. Fish & Shellfish Immunology, 122, 181-190. https://doi.org/10.1016/j.fsi.2022.01.031
  • Stevens, C. E., & Hume, I. D. (2004). Comparative Physiology of the Vertebrate Digestive System: Cambridge University Press. Cambridge, UK.
  • Stosik, M., Tokarz-Deptuła, B., & Deptuła, W. (2023). Immunity of the intestinal mucosa in teleost fish. Fish & Shellfish Immunology, 108572. https://doi.org/10.1016/j.fsi.2023.108572
  • Verdile, N., Mirmahmoudi, R., Brevini, T. A. L., & Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal, 3(12), 2830-2839. https://doi.org/10.1017/S1751731119001319
  • Whitehead, P. (1977). How Fishes Live. Galley Press. An Imprint of W. H. Smith and Son Limited, England.
  • Wilson J. M., & Castro L. F. C. (2010). Morphological diversity of the gastrointestinal tract in fishes. Fish Physiology, 30, 1–55. https://doi.org/10.1016/S1546-5098(10)03001-3
There are 27 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research Articles
Authors

Beste Demirci 0000-0001-7557-0452

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date October 18, 2023
Acceptance Date December 7, 2023
Published in Issue Year 2023

Cite

APA Demirci, B. (2023). Scanning Electron Microscopic Examination of Rainbow Trout Gastrointestinal Mucosa. Veterinary Journal of Kastamonu University, 2(2), 1-7. https://doi.org/10.61262/vetjku.1375634