Clinical Research
BibTex RIS Cite

Leflunomide Improves Lipid Profiles and Oxidative Stress in the Hypothalamus of Acute High-Fructose-Fed Rats

Year 2022, Volume: 17 Issue: 2, 49 - 54, 01.10.2022
https://doi.org/10.5152/VetSciPract.2022.221426

Abstract

This study aimed to investigate the effects of oxidative stress and lipid profiles on the hypothalamus of rats fed with acute high-dose fructose and the possible contribution of leflunomide to these effects. Totally 48 Spraque–Dawley male rats 12-16 weeks old, weighing 250-300 g were included and were randomly divided into 6 groups; group 1: control, group 2: carboxymethyl cellulose+control, group 3: leflunomide, group 4: acute high-dose fructose, group 5: acute highdose fruct ose+c arbox ymeth yl cellulose, and group 6: acute high-dose fruct ose+l eflun omide. Acute high-dose fructose groups were given 63% fructose solution for 24 hours after 48 hours of fasting. Since leflunomide is not soluble in water, it was dissolved in 1% carboxymethyl cellulose solution and 10 mg/kg/day of leflunomide was administered orally in the morning and evening. After 72 hours, the rats were sacrificed under general anesthesia and the hypothalamus tissue was removed. The low-density lipoprotein (LDL), total cholesterol, total antioxidant-oxidant status (TAS-TOS), and oxidative stress index (OSI) levels were determined from the obtained hypothalamus tissue using commercial kits based on enzyme-linked immunosorbent assay method. There was no significant difference between the groups in total antioxidant level. A significant increase was found in the TOS and OSI levels in fourth group vs first group (P < 0.001). In the treatment groups, a statistically significant decrease was observed with leflunomide (P < .05). A statistically significant decrease was detected in LDL and total cholesterol levels in sixth group versus fourth group (P < .05). In this study, the importance of Leflunomide in reducing oxidative stress and lipid profile in high fructose-fed rats was determined. In conclusion, Leflunomide may be promising in reducing brain damage due to oxidative stress.

References

  • 1. Campos VC, Tappy L. Physiological handling of dietary fructose-containing sugars: implications for health. Int J Obes (Lond). 2016;40(1):S6-S11.
  • 2. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7(5):251-264.
  • 3. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261.
  • 4. Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci. 2016;53(1):52-67.
  • 5. Omar NA, Frank J, Kruger J, et al. Effects of High Intakes of Fructose and Galactose, with or without Added Fruct oolig osacc harid es, on Metabolic Factors, Inflammation, and Gut Integrity in a Rat Model. Mol Nutr Food Res. 2021;65(6):2001133.
  • 6. Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr. 2013;52(2):537-545.
  • 7. Crescenzo R, Bianco F, Coppola P, et al. Adipose tissue remodeling in rats exhibiting fructose-induced obesity. Eur J Nutr. 2014;53(2):413-419.
  • 8. Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851(8):1052-1065.
  • 9. Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s disease. Int J Mol Sci. 2020;21(4):1505.
  • 10. López M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001-1008.
  • 11. Li JM, Ge CX, Xu MX, et al. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose‐fed rats. Mol Nutr Food Res. 2015;59(2):189-202.
  • 12. Mendes NF, Jara CP, Zanesco AM, de Araújo EP. Hypothalamic microglial heterogeneity and signature under high fat diet–induced inflammation. Int J Mol Sci. 2021;22(5):2256.
  • 13. Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M. High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis. 2016;89:65-75.
  • 14. Cai D. Neuroinflammation and neurodegeneration in overn utrit ion-i nduce d diseases. Trends Endocrinol Metab. 2013;24(1):40-47.
  • 15. Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153-162.
  • 16. Fang CB, Zhou DX, Zhan SX, et al. Amelioration of experimental autoimmune uveitis by leflunomide in Lewis rats. PLoS One. 2013;8(4):e62071.
  • 17. Wan Z, Li H, Wu X, et al. Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci. 2021;265:118689.
  • 18. DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci. 2020;77(11):2079-2090.
  • 19. Fortino MA, Lombardo YB, Chicco A. The reduction of dietary sucrose improves dyslipidemia, adiposity, and insulin secretion in an insulinresistant rat model. Nutrition. 2007;23(6):489-497.
  • 20. Latchoumycandane C, Seah QM, Tan RC, Sattabongkot J, Beerheide W, Boelsterli UA. Leflunomide or A77 1726 protect from aceta minop hen-i nduce d cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol Appl Pharmacol. 2006;217(1):125-133.
  • 21. Manna SK, Mukhopadhyay A, Aggarwal BB. Leflunomide suppresses TNF-induced cellular responses: effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J Immunol. 2000;165(10):5962-5969.
  • 22. Xuan J, Ren Z, Qing T, et al. Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology. 2018;396-397:33-45.
  • 23. Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta. 2020;503:128-135.
  • 24. Ondřej Š. Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome. Physiol Res. 2021;70(suppl 4):585.
  • 25. Schwärzler J, Mayr L, Radlinger B, et al. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes (Lond). 2022;46(5):951-959.
  • 26. de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MAR. Metabolic syndrome signs in Wistar rats submitted to different highfructose ingestion protocols. Br J Nutr. 2009;101(8):1178-1184.
  • 27. Nabil M, El Demellawy MA, Mahmoud MF, Mahmoud AAA. Prolonged overnutrition with fructose or fat induces metabolic derangements in rats by disrupting the crosstalk between the hypothalamus and periphery: possible amelioration with fenofibrate. Eur J Pharmacol. 2020;879:173136.
  • 28. Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. BioFactors. 2011;37(1):8-16.
  • 29. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH. Tumor necrosis factor-α and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2009;2(5):297-306.
  • 30. Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D. Astrocytic process plasticity and IKKβ/NF-κB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 2017;25(5):1091- 1102.e4.
  • 31. Terekhova I, Kritskiy I, Agafonov M, Kumeev R, Martínez-Cortés C, Pérez-Sánchez H. Selective binding of cyclodextrins with leflunomide and its pharmacologically active metabolite teriflunomide. Int J Mol Sci. 2020;21(23):9102.
  • 32. Karaman A, Fadillioglu E, Turkmen E, Tas E, Yilmaz Z. Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver. Pediatr Surg Int. 2006;22(5):428-434.
  • 33. Yao HW, Li J, Chen JQ, Xu SY. Inhibitory effect of leflunomide on hepatic fibrosis induced by CCl~ 4 in rats. Acta Pharmacol Sin. 2004;25(7):915-920.

Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir

Year 2022, Volume: 17 Issue: 2, 49 - 54, 01.10.2022
https://doi.org/10.5152/VetSciPract.2022.221426

Abstract

Bu çalışmada, akut yüksek doz fruktozla beslenen sıçanlarda oksidatif stres ve lipid profillerinin sıçan hipotalamusu üzerine etkileri ve bu etkilerinde Leflunomid’in olası katkısının incelenmesi amaçlanmıştır. Çalışmaya 12-16 haftalık, 250-300 g ağırlığındaki 48 Spraque Dawley erkek sıçanlar dahil edilmiş ve rastgele 6 gruba ayrılmıştır. (Grup 1 (Kontrol); Grup 2 karboksimetil selülöz
(CMC)+kontrol; Grup 3 (Leflunomid), Grup 4 (Akut yüksek doz fruktoz), Grup 5 (Akut yüksek doz fruktoz + CMC), Grup 6 (Akut yüksek doz fruktoz + Leflunomid). Akut yüksek doz fruktoz grupları
sıçanların 48 saat açlığı takiben 24 saat boyunca %63’lük fruktoz çözeltisi ile beslenmeleri sağlanarak oluşturulmuştur. Leflunomid ise suda çözünmediği için %1’lik CMC çözeltisi içinde çözülmüştür
ve 10 mg/kg/gün Leflunomid sabah akşam oral yolla uygulanmıştır. 72 saatin sonunda sıçanlar genel anestezi altında sakrifiye edilmiş ve hipotalamus dokusu çıkarılmıştır. Elde edilen hipotalamus dokusundan düşük yoğunluklu lipoprotein (LDL), total kolesterol, total antioksidan-oksidan (TAS-TOS), oksidatif stres indeksi (OSİ) düzeyleri solid faz sandwich (ELİSA) prensibine dayanan hazır ölçüm kitleri kullanılarak belirlenmiştir. TAS düzeyinde gruplar arasında anlamlı fark saptanmamıştır. TOS ve OSİ düzeylerinde, 4. grupta 1. gruba göre anlamlı artış tespit edilmiştir (P < ,001). Tedavi gruplarına bakıldığında leflunomid uygulanan gruplarda istatistiksel olarak anlamlı azalma görülmüştür (P < ,05). LDL ve total kolesterol düzeylerinde ise 6. grupta 4. gruba göre istatistiksel olarak anlamlı düzeyde azalma tespit edilmiştir (P < ,05). Bu çalışmada, yüksek fruktozla beslenen sıçanlarda, oksidatif stresin ve lipit profilinin azalmasında Leflunomid’in önemi belirlenmiştir. Sonuç olarak, Leflunomid oksidatif strese bağlı gelişen beyin hasarının azalmasında umut vaat edici olabilir.

References

  • 1. Campos VC, Tappy L. Physiological handling of dietary fructose-containing sugars: implications for health. Int J Obes (Lond). 2016;40(1):S6-S11.
  • 2. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7(5):251-264.
  • 3. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261.
  • 4. Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci. 2016;53(1):52-67.
  • 5. Omar NA, Frank J, Kruger J, et al. Effects of High Intakes of Fructose and Galactose, with or without Added Fruct oolig osacc harid es, on Metabolic Factors, Inflammation, and Gut Integrity in a Rat Model. Mol Nutr Food Res. 2021;65(6):2001133.
  • 6. Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr. 2013;52(2):537-545.
  • 7. Crescenzo R, Bianco F, Coppola P, et al. Adipose tissue remodeling in rats exhibiting fructose-induced obesity. Eur J Nutr. 2014;53(2):413-419.
  • 8. Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851(8):1052-1065.
  • 9. Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s disease. Int J Mol Sci. 2020;21(4):1505.
  • 10. López M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001-1008.
  • 11. Li JM, Ge CX, Xu MX, et al. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose‐fed rats. Mol Nutr Food Res. 2015;59(2):189-202.
  • 12. Mendes NF, Jara CP, Zanesco AM, de Araújo EP. Hypothalamic microglial heterogeneity and signature under high fat diet–induced inflammation. Int J Mol Sci. 2021;22(5):2256.
  • 13. Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M. High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis. 2016;89:65-75.
  • 14. Cai D. Neuroinflammation and neurodegeneration in overn utrit ion-i nduce d diseases. Trends Endocrinol Metab. 2013;24(1):40-47.
  • 15. Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153-162.
  • 16. Fang CB, Zhou DX, Zhan SX, et al. Amelioration of experimental autoimmune uveitis by leflunomide in Lewis rats. PLoS One. 2013;8(4):e62071.
  • 17. Wan Z, Li H, Wu X, et al. Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci. 2021;265:118689.
  • 18. DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci. 2020;77(11):2079-2090.
  • 19. Fortino MA, Lombardo YB, Chicco A. The reduction of dietary sucrose improves dyslipidemia, adiposity, and insulin secretion in an insulinresistant rat model. Nutrition. 2007;23(6):489-497.
  • 20. Latchoumycandane C, Seah QM, Tan RC, Sattabongkot J, Beerheide W, Boelsterli UA. Leflunomide or A77 1726 protect from aceta minop hen-i nduce d cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol Appl Pharmacol. 2006;217(1):125-133.
  • 21. Manna SK, Mukhopadhyay A, Aggarwal BB. Leflunomide suppresses TNF-induced cellular responses: effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J Immunol. 2000;165(10):5962-5969.
  • 22. Xuan J, Ren Z, Qing T, et al. Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology. 2018;396-397:33-45.
  • 23. Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta. 2020;503:128-135.
  • 24. Ondřej Š. Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome. Physiol Res. 2021;70(suppl 4):585.
  • 25. Schwärzler J, Mayr L, Radlinger B, et al. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes (Lond). 2022;46(5):951-959.
  • 26. de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MAR. Metabolic syndrome signs in Wistar rats submitted to different highfructose ingestion protocols. Br J Nutr. 2009;101(8):1178-1184.
  • 27. Nabil M, El Demellawy MA, Mahmoud MF, Mahmoud AAA. Prolonged overnutrition with fructose or fat induces metabolic derangements in rats by disrupting the crosstalk between the hypothalamus and periphery: possible amelioration with fenofibrate. Eur J Pharmacol. 2020;879:173136.
  • 28. Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. BioFactors. 2011;37(1):8-16.
  • 29. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH. Tumor necrosis factor-α and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2009;2(5):297-306.
  • 30. Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D. Astrocytic process plasticity and IKKβ/NF-κB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 2017;25(5):1091- 1102.e4.
  • 31. Terekhova I, Kritskiy I, Agafonov M, Kumeev R, Martínez-Cortés C, Pérez-Sánchez H. Selective binding of cyclodextrins with leflunomide and its pharmacologically active metabolite teriflunomide. Int J Mol Sci. 2020;21(23):9102.
  • 32. Karaman A, Fadillioglu E, Turkmen E, Tas E, Yilmaz Z. Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver. Pediatr Surg Int. 2006;22(5):428-434.
  • 33. Yao HW, Li J, Chen JQ, Xu SY. Inhibitory effect of leflunomide on hepatic fibrosis induced by CCl~ 4 in rats. Acta Pharmacol Sin. 2004;25(7):915-920.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Özgen Kılıç Erkek 0000-0001-8037-099X

Gülşah Gündoğdu This is me 0000-0002-9924-5176

Mehmet Alpua This is me 0000-0002-2359-007X

Melek Bor Küçükatay This is me 0000-0002-9366-0205

Publication Date October 1, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Kılıç Erkek, Ö., Gündoğdu, G., Alpua, M., Bor Küçükatay, M. (2022). Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir. Veterinary Sciences and Practices, 17(2), 49-54. https://doi.org/10.5152/VetSciPract.2022.221426
AMA Kılıç Erkek Ö, Gündoğdu G, Alpua M, Bor Küçükatay M. Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir. Veterinary Sciences and Practices. October 2022;17(2):49-54. doi:10.5152/VetSciPract.2022.221426
Chicago Kılıç Erkek, Özgen, Gülşah Gündoğdu, Mehmet Alpua, and Melek Bor Küçükatay. “Leflunomid Akut Yüksek Fruktoz Ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini Ve Oksidatif Stresi İyileştirir”. Veterinary Sciences and Practices 17, no. 2 (October 2022): 49-54. https://doi.org/10.5152/VetSciPract.2022.221426.
EndNote Kılıç Erkek Ö, Gündoğdu G, Alpua M, Bor Küçükatay M (October 1, 2022) Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir. Veterinary Sciences and Practices 17 2 49–54.
IEEE Ö. Kılıç Erkek, G. Gündoğdu, M. Alpua, and M. Bor Küçükatay, “Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir”, Veterinary Sciences and Practices, vol. 17, no. 2, pp. 49–54, 2022, doi: 10.5152/VetSciPract.2022.221426.
ISNAD Kılıç Erkek, Özgen et al. “Leflunomid Akut Yüksek Fruktoz Ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini Ve Oksidatif Stresi İyileştirir”. Veterinary Sciences and Practices 17/2 (October 2022), 49-54. https://doi.org/10.5152/VetSciPract.2022.221426.
JAMA Kılıç Erkek Ö, Gündoğdu G, Alpua M, Bor Küçükatay M. Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir. Veterinary Sciences and Practices. 2022;17:49–54.
MLA Kılıç Erkek, Özgen et al. “Leflunomid Akut Yüksek Fruktoz Ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini Ve Oksidatif Stresi İyileştirir”. Veterinary Sciences and Practices, vol. 17, no. 2, 2022, pp. 49-54, doi:10.5152/VetSciPract.2022.221426.
Vancouver Kılıç Erkek Ö, Gündoğdu G, Alpua M, Bor Küçükatay M. Leflunomid Akut Yüksek Fruktoz ile Beslenen Sıçanların Hipotalamusunda Lipid Profillerini ve Oksidatif Stresi İyileştirir. Veterinary Sciences and Practices. 2022;17(2):49-54.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2987230564