Research Article
BibTex RIS Cite

Sığır Eti İşleme Hattında Çoklu İlaç Dirençli Stafilokokların Belirlenmesi

Year 2023, Volume: 18 Issue: 1, 25 - 30, 26.04.2023

Abstract

Bezelye İşleme Hattında Çoklu İlaç Dirençli Stafilokokların Belirlenmesi Bazı Staphylococcus türleri zoonotiktir ve zoonotik olmayan türler de antibiyotik direnci genlerini barındırabilir ve gıda
zinciri yoluyla insanlara iletebilir. Bu çalışmanın amacı, insan tüketimi için işlenen sığır etindeki stafilokok kirliliğini ve organizmaların antibiyogramını belirlemektir. Sığır eti ve et temas yüzeylerinden Staphylococcus izolasyonu ve tanımlaması yapılması için Aplikasyon Programlı Arayüz gibi standart mikrobiyolojik protokoller kullanıldı. Stafilokokların 14 yaygın olarak kullanılan antimikrobiyalajanlara duyarlılığı disk difüzyon yöntemiyle test edildi. İşlemden önceki ortalama stafilokok yükü 5.0 × 109 ± 1.0 × 105 idi ve işlemden sonra 7.1 × 109 ± 1.0 × 106 cfu/cm2 oldu. Test edilen 200 örnekten 25'inde (%12,5) Staphylococcus spp. izole edildi. İzolatlar Staphylococcus aureus (%12), Staphylococcus xylosus (%56), Staphylococcus cohnii (%16), Staphylococcus saprophyticus (%12) ve Staphylococcus hominis (%4) idi. İzolatların 22'si (%88) Dünya Sağlık Örgütü'nün "yüksek" ve "en yüksek" öncelikli antibiyotiklerinin listesinde yer alanlar da dahil olmak üzere antimikrobiyallere
dirençliydi. On sekiz izolat (%81,8) multidrug-resistant iken 4'ü (%21) en az bir antimikrobiyal ajana dirençliydi. Sığır eti ve et temas yüzeylerinden çoklu ilaç dirençli Staphylococcus izole edilmesi,
organizmaların veya direnç belirleyicilerinin gıda zinciri yoluyla insanlara taşınması bakımından önemli gıda güvenliği ve halk sağlığı riskleri taşımaktadır. Bu sonuç da, sığır üretimi ve işleme hatlarında gıda güvenliği "çiftlikten çatala" kavramının benimsenmesinin stafilokok et kirliliğini önlemek ve buna bağlı olarak olumsuz halk sağlığı ve ekonomik sonuçları engellemenin gerekliliğine
vurgu yapmaktadır.

References

  • 1. Lee H, Yoon Y. Etiological agents implicated in foodborne illness worldwide. Food Sci Anim Resour. 2021;41(1):1-7. [CrossRef]
  • 2. Pires SM, Desta BN, Mughini-Gras L, et al. Burden of foodborne diseases: think global, act local. Curr Opin Food Sci. 2021. [CrossRef]; 39:152-159. [CrossRef]
  • 3. Okoli CE, Njoga EO, Enem SI, Godwin EE, Nwanta JA, Chah KF. Prevalence, toxigenic potential and antimicrobial susceptibility profile of Staphylococcus isolated from ready-to-eat meats. Vet World. 2018;11(9):1214-1221. [CrossRef]
  • 4. Njoga EO, Nwankwo IO, Ugwunwarua JC. Epidemiology of thermotolerant Campylobacter infection in poultry in Nsukka agricultural zone, Nigeria. Int J One Health. 2019;5:92-98. [CrossRef]
  • 5. Herenda D, Chambers PG, Ettriqui A, Seneviratna P. Manual on meat inspection for developing countries. FAO Anim Prod Health Pap 119. Rome, Italy: FAO, Viale delle Terme di Caracalla. 2011.
  • 6. Ekere SO, Njoga EO, Onunkwo JI, Njoga U. Serosurveillance of Brucella antibody in food animals and role of slaughterhouse workers in spread of Brucella infection in Southeast. Vet World. 2018;11: 1171-1178.
  • 7. Stuart SA. Code of Hygienic Practice for Meat; (2005). [CrossRef]
  • 8. Ogugua AJ, Onunkwo JI, Nwankwo IO, Gugu LE, Basil-Ejidike RC, Nwanta JA. Tubercles in cattle carcasses and risk behaviours for zoonotic tuberculosis transmission among workers in a municipal slaughterhouse. Not Sci Biol. 2021;13(2):10811. [CrossRef]
  • 9. Bikom PM, Nwankwo IO, Ogugua AJ, et al. Prevalence and distribution of bovine tuberculosis among slaughtered cattle in Cross River State, Nigeria. Anim Res Int. 2021;18(1):3977-3989.
  • 10. Nwankwo IO, Ezenduka EV, Nwanta JA, Ogugua AJ, Audu BJ. Prevalence of Campylobacter spp. and antibiotics resistant E. coli on poultry carcasses and handlers’ hands at Ikpa slaughter, Nsukka, Nigeria. Not Sci Biol. 2021;13(2):Article No. 10866. [CrossRef]
  • 11. Njoga EO, Onunkwo JI, Okoli CE, Ugwuoke WI, Nwanta JA, Chah KF. Assessment of antimicrobial drug administration and antimicrobial residues in food animals in Enugu State, Nigeria. Trop Anim Health Prod. 2018;50(4):897-902. [CrossRef]
  • 12. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int. 2014;2014:Article ID 827965, 9 pages. [CrossRef]
  • 13. Fletcher S, Boonwaat L, Moore T, Chavada R, Conaty S. Investigating an outbreak of staphylococcal food poisoning among travellers across two Australian states. Western Pac Surveill Response J. 2015;6(2):17-21. [CrossRef]
  • 14. Abebe E, Gugsa G, Ahmed M. Review on major foodborne zoonotic bacteria pathogens. J Trop Med. 2020;2020:Article ID 4674235, 19 pages. [CrossRef]
  • 15. MMWR. Outbreak of Staphylococcal Food Poisoning from a Military Unit Lunch Party — United States. 2013; 2012.
  • 16. Njoga EO, Onunkwo JI, Ekere SO, Njoga U, Okoro WN. Seroepidemiology of equine brucellosis and role of horse carcass processors in spread of Brucella infection in Enugu State, Nigeria. Int J Curr Res Rev. 2018;10:39-35.
  • 17. Onunkwo JI, Njoga EO, Njoga UJ, Ezeokafor E, Ekere SO. Brucella seropositivity in chicken and risk factors for Brucella infection at the animal-human interface in Anambra State, Nigeria. Int J One Health. 2018;4:28-34. [CrossRef]
  • 18. Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013;6(1):14-17.
  • 19. Cappuciono M, Sherma S. Manual of Laboratory Microbiology. Oxford, Philadelphia: Blackwell Publishing Company; 2011:414.
  • 20. Cheesbrough M. Medical Laboratory Manual for Tropical Countries. Oxford, JH: Linacre House; 2000.
  • 21. CLSI. Performance Standards for Antimicrobial Susceptibility Testing CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019:58–68.
  • 22. Ademola IA, McCrindle CM, Adejuwon TA. Losses associated with mortality of cattle and camels during transportation to Oko-Oba abattoir, Lagos State, Nigeria. Eur J Transl Myol - Basic Appl Myol. 2010;1:13-16.
  • 23. Njisane YZ, Muchenje V. Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality — a review. Asian-Australas J Anim Sci. 2017;30(6):755-764. [CrossRef]
  • 24. Oloruntoba EO, Adebayo AM, Omokhodion FO. Sanitary conditions of abattoirs in Ibadan, Southwest Nigeria. Afr J Med Med Sci. 2014;43(3):231-237.
  • 25. Edward KC, Nnochiri OA, Owuamalam PO, Onyekachi OV, Akumah CN. Microbial quality assessment of an abattoir effluent discharged into Waterside Riverin Aba, Abia State, Nigeria. J Pharm Biol Sci. 2017;12(5):38-41.
  • 26. Nafarnda WD, Ajayi IE, Shawulu JC, et al. Bacteriological quality of abattoir effluents discharged into water bodies in Abuja, Nigeria. Int Sch Res Netw ISRN Vet Sci. 2012;2012:Article ID 515689, 5 pages. [CrossRef]
  • 27. Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog. 2018;14(6):e1007112.
  • 28. Ajibo FE, Njoga EO, AzorN, Idika IK, Nwanta JA. Epidemiology of infections with zoonotic pig parasites in Enugu State, Nigeria. Vet Parasitol Reg Stud Reports. 2020;20:100397. [CrossRef]
  • 29. Szewczyk EM, Nowak T, Cieślikowski T, Szewczyk EM, Nowak T, Cies T. Potential role of Staphylococcus cohnii in a hospital environment. Microb Ecol Health Dis. 2003;15(1):51-56. [CrossRef]
  • 30. Lo J, Nwafor SU, Schwitters AM, et al. Key population hotspots in Nigeria for targeted HIV program planning: mapping, validation, and reconciliation. JMIR Public Health Surveill. 2021;7(2):e25623. [CrossRef]
  • 31. Ukaegbu E, Alibekova R, Ali S, Crape B, Issanov A. Trends of HIV/AIDS knowledge and attitudes among Nigerian women between 2007 and 2017 using Multiple Indicator Cluster Survey data. BMC Public Health. 2022;22(1):440. [CrossRef]

Detection of Multidrug-Resistant Staphylococci in Beef Processing Line

Year 2023, Volume: 18 Issue: 1, 25 - 30, 26.04.2023

Abstract

Some Staphylococcus species are zoonotic and the non-zoonotic species may harbor antibioticresistance genes for transmission to humans via the food chain. The study aimed at determining
the staphylococci contamination of beef processed for human consumption and the antibiogram of the organisms. Isolation and identification of Staphylococcus from beef and the meat contact surfaces were done following standard microbiological protocols, including the Application Programmed Interface. Disc diffusion method was used to test the susceptibility of the staphylococci to 14 commonly used antimicrobial agents. The mean staphylococci load of the beef before processing was 5.0 × 109 ± 1.0 × 105 and 7.1 × 109 ± 1.0 × 106 cfu/cm2 after. Of the 200 samples tested, Staphylococcus spp. were isolated in 25 (12.5%). The isolates were Staphylococcus aureus(12%), Staphylococcus xylosus (56%), Staphylococcus cohnii (16%), Staphylococcus saprophyticus(12%), and Staphylococcus hominis (4%). Twenty-two (88%) of the isolates were resistant to antimicrobials, including those listed in World Health Organization’s list of “high” and “highest” priority antibiotics. Eighteen isolates (81.8%) were multidrug resistant while 4 (21%) were resistant to at least 1 antimicrobial agent. Isolation of multidrug-resistant Staphylococcus from beef and the meat contact surfaces portends significant food safety and public health risks as the organisms or their resistance determinants are transmissible to humans via the food chain. This emphasizes the need for the adoption of the “farm to fork” concept of food safety in beef production and processing lines to forestall staphylococci meat contamination and hence the untoward public health and economic consequences thereof.

References

  • 1. Lee H, Yoon Y. Etiological agents implicated in foodborne illness worldwide. Food Sci Anim Resour. 2021;41(1):1-7. [CrossRef]
  • 2. Pires SM, Desta BN, Mughini-Gras L, et al. Burden of foodborne diseases: think global, act local. Curr Opin Food Sci. 2021. [CrossRef]; 39:152-159. [CrossRef]
  • 3. Okoli CE, Njoga EO, Enem SI, Godwin EE, Nwanta JA, Chah KF. Prevalence, toxigenic potential and antimicrobial susceptibility profile of Staphylococcus isolated from ready-to-eat meats. Vet World. 2018;11(9):1214-1221. [CrossRef]
  • 4. Njoga EO, Nwankwo IO, Ugwunwarua JC. Epidemiology of thermotolerant Campylobacter infection in poultry in Nsukka agricultural zone, Nigeria. Int J One Health. 2019;5:92-98. [CrossRef]
  • 5. Herenda D, Chambers PG, Ettriqui A, Seneviratna P. Manual on meat inspection for developing countries. FAO Anim Prod Health Pap 119. Rome, Italy: FAO, Viale delle Terme di Caracalla. 2011.
  • 6. Ekere SO, Njoga EO, Onunkwo JI, Njoga U. Serosurveillance of Brucella antibody in food animals and role of slaughterhouse workers in spread of Brucella infection in Southeast. Vet World. 2018;11: 1171-1178.
  • 7. Stuart SA. Code of Hygienic Practice for Meat; (2005). [CrossRef]
  • 8. Ogugua AJ, Onunkwo JI, Nwankwo IO, Gugu LE, Basil-Ejidike RC, Nwanta JA. Tubercles in cattle carcasses and risk behaviours for zoonotic tuberculosis transmission among workers in a municipal slaughterhouse. Not Sci Biol. 2021;13(2):10811. [CrossRef]
  • 9. Bikom PM, Nwankwo IO, Ogugua AJ, et al. Prevalence and distribution of bovine tuberculosis among slaughtered cattle in Cross River State, Nigeria. Anim Res Int. 2021;18(1):3977-3989.
  • 10. Nwankwo IO, Ezenduka EV, Nwanta JA, Ogugua AJ, Audu BJ. Prevalence of Campylobacter spp. and antibiotics resistant E. coli on poultry carcasses and handlers’ hands at Ikpa slaughter, Nsukka, Nigeria. Not Sci Biol. 2021;13(2):Article No. 10866. [CrossRef]
  • 11. Njoga EO, Onunkwo JI, Okoli CE, Ugwuoke WI, Nwanta JA, Chah KF. Assessment of antimicrobial drug administration and antimicrobial residues in food animals in Enugu State, Nigeria. Trop Anim Health Prod. 2018;50(4):897-902. [CrossRef]
  • 12. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int. 2014;2014:Article ID 827965, 9 pages. [CrossRef]
  • 13. Fletcher S, Boonwaat L, Moore T, Chavada R, Conaty S. Investigating an outbreak of staphylococcal food poisoning among travellers across two Australian states. Western Pac Surveill Response J. 2015;6(2):17-21. [CrossRef]
  • 14. Abebe E, Gugsa G, Ahmed M. Review on major foodborne zoonotic bacteria pathogens. J Trop Med. 2020;2020:Article ID 4674235, 19 pages. [CrossRef]
  • 15. MMWR. Outbreak of Staphylococcal Food Poisoning from a Military Unit Lunch Party — United States. 2013; 2012.
  • 16. Njoga EO, Onunkwo JI, Ekere SO, Njoga U, Okoro WN. Seroepidemiology of equine brucellosis and role of horse carcass processors in spread of Brucella infection in Enugu State, Nigeria. Int J Curr Res Rev. 2018;10:39-35.
  • 17. Onunkwo JI, Njoga EO, Njoga UJ, Ezeokafor E, Ekere SO. Brucella seropositivity in chicken and risk factors for Brucella infection at the animal-human interface in Anambra State, Nigeria. Int J One Health. 2018;4:28-34. [CrossRef]
  • 18. Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013;6(1):14-17.
  • 19. Cappuciono M, Sherma S. Manual of Laboratory Microbiology. Oxford, Philadelphia: Blackwell Publishing Company; 2011:414.
  • 20. Cheesbrough M. Medical Laboratory Manual for Tropical Countries. Oxford, JH: Linacre House; 2000.
  • 21. CLSI. Performance Standards for Antimicrobial Susceptibility Testing CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019:58–68.
  • 22. Ademola IA, McCrindle CM, Adejuwon TA. Losses associated with mortality of cattle and camels during transportation to Oko-Oba abattoir, Lagos State, Nigeria. Eur J Transl Myol - Basic Appl Myol. 2010;1:13-16.
  • 23. Njisane YZ, Muchenje V. Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality — a review. Asian-Australas J Anim Sci. 2017;30(6):755-764. [CrossRef]
  • 24. Oloruntoba EO, Adebayo AM, Omokhodion FO. Sanitary conditions of abattoirs in Ibadan, Southwest Nigeria. Afr J Med Med Sci. 2014;43(3):231-237.
  • 25. Edward KC, Nnochiri OA, Owuamalam PO, Onyekachi OV, Akumah CN. Microbial quality assessment of an abattoir effluent discharged into Waterside Riverin Aba, Abia State, Nigeria. J Pharm Biol Sci. 2017;12(5):38-41.
  • 26. Nafarnda WD, Ajayi IE, Shawulu JC, et al. Bacteriological quality of abattoir effluents discharged into water bodies in Abuja, Nigeria. Int Sch Res Netw ISRN Vet Sci. 2012;2012:Article ID 515689, 5 pages. [CrossRef]
  • 27. Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog. 2018;14(6):e1007112.
  • 28. Ajibo FE, Njoga EO, AzorN, Idika IK, Nwanta JA. Epidemiology of infections with zoonotic pig parasites in Enugu State, Nigeria. Vet Parasitol Reg Stud Reports. 2020;20:100397. [CrossRef]
  • 29. Szewczyk EM, Nowak T, Cieślikowski T, Szewczyk EM, Nowak T, Cies T. Potential role of Staphylococcus cohnii in a hospital environment. Microb Ecol Health Dis. 2003;15(1):51-56. [CrossRef]
  • 30. Lo J, Nwafor SU, Schwitters AM, et al. Key population hotspots in Nigeria for targeted HIV program planning: mapping, validation, and reconciliation. JMIR Public Health Surveill. 2021;7(2):e25623. [CrossRef]
  • 31. Ukaegbu E, Alibekova R, Ali S, Crape B, Issanov A. Trends of HIV/AIDS knowledge and attitudes among Nigerian women between 2007 and 2017 using Multiple Indicator Cluster Survey data. BMC Public Health. 2022;22(1):440. [CrossRef]
There are 31 citations in total.

Details

Primary Language English
Subjects Veterinary Microbiology
Journal Section Research Articles
Authors

Akwoba Joseph Ogugua This is me 0000-0001-5927-7635

Publication Date April 26, 2023
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Ogugua, A. J. (2023). Detection of Multidrug-Resistant Staphylococci in Beef Processing Line. Veterinary Sciences and Practices, 18(1), 25-30.
AMA Ogugua AJ. Detection of Multidrug-Resistant Staphylococci in Beef Processing Line. Veterinary Sciences and Practices. April 2023;18(1):25-30.
Chicago Ogugua, Akwoba Joseph. “Detection of Multidrug-Resistant Staphylococci in Beef Processing Line”. Veterinary Sciences and Practices 18, no. 1 (April 2023): 25-30.
EndNote Ogugua AJ (April 1, 2023) Detection of Multidrug-Resistant Staphylococci in Beef Processing Line. Veterinary Sciences and Practices 18 1 25–30.
IEEE A. J. Ogugua, “Detection of Multidrug-Resistant Staphylococci in Beef Processing Line”, Veterinary Sciences and Practices, vol. 18, no. 1, pp. 25–30, 2023.
ISNAD Ogugua, Akwoba Joseph. “Detection of Multidrug-Resistant Staphylococci in Beef Processing Line”. Veterinary Sciences and Practices 18/1 (April 2023), 25-30.
JAMA Ogugua AJ. Detection of Multidrug-Resistant Staphylococci in Beef Processing Line. Veterinary Sciences and Practices. 2023;18:25–30.
MLA Ogugua, Akwoba Joseph. “Detection of Multidrug-Resistant Staphylococci in Beef Processing Line”. Veterinary Sciences and Practices, vol. 18, no. 1, 2023, pp. 25-30.
Vancouver Ogugua AJ. Detection of Multidrug-Resistant Staphylococci in Beef Processing Line. Veterinary Sciences and Practices. 2023;18(1):25-30.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2987230564