NG Title Küçük Ölçekli Çiftlik Koşullarında Ördek ve Tavukların İndikatör Mikroflorası
Year 2025,
Volume: 20 Issue: 1, 24 - 32, 29.04.2025
Liliіa Vygovska
,
Artem Ushkalov
,
Liliana Davydovska
,
Volodymyr Melnyk
,
Valerii Ushkalov
,
Oleksii Shevchenko
Abstract
Bu çalışmanın amacı, küçük ölçekli çiftlik koşullarında kanatlılarda zoonotik bakterilerin yayılma risklerini belirlemektir. Çalışma için 100-110 günlük yaştaki Muscovy ördekleri ve tavukların (Hisex cinsi) altlık örnekleri (her birinden 10 örnek) seçilmiştir. Örnekler, uluslararası standartlara uygun olarak sertifikalı besin ortamları ve ekipmanlar kullanılarak incelenmiştir: ISO 6887-1:2017; ISO 21528-1:2017; ISO 11290-1:2017; ISO 10273:2017; ISO 6579-1:2017; ISO/FDIS 7218; ve DSTU 8534:2015. Klinik olarak sağlıklı ördek ve tavuklardan alınan altlık örnekleri Enterobacteriaceae familyası, Listeria spp., Enterococcus spp., Pseudomonas aeruginosa gibi potansiyel patojenik bakterilerin tespiti için incelenmiştir. İncelenen biyomateryalde, Klebsiella spp., Yersinia spp., Salmonella spp., Pseudomonas aeruginosa, Listeria spp. gibi bakteriler tespit edilmemiştir. Tavuk ve ördek altlık örneklerinde sırasıyla Escherichia coli (5.0x105 CFU/g ve 6.7x106 CFU/g) ve Enterococcus faecalis (2.4x108 CFU/g ve 1.2x108 CFU/g) içerikleri, fizyolojik olarak kabul edilmektedir. Serbest dolaşımlı küçük ölçekli bir çiftlikte yetiştirilen klinik olarak sağlıklı tavukların ve Muscovy ördeklerinin dışkılarının bakteriyolojik incelemesinde patojenik bakteri taşıyıcısı görülmemiştir; bu da “bahçe tavukçuluğu” kümes hayvanı ürünlerinin tüketiminden kaynaklanan kontrolsüz zoonotik patojen yayılımı riskinin bulunmadığını göstermektedir. Altlık örneklerindeki Escherichia coli ve Enterococcus faecalis’in, fizyolojik olduğu düşünülmektedir.
Ethical Statement
Ethics committee National University of Life and Environmental Sciences of Ukraine, approval № 013/2024 29.04.2024.
Project Number
Research was carried out with the financial support of the Ministry of Education and Science of Ukraine under project 110/4-pr-2023
Thanks
We express our thanks to the President of the University Stanislav Nikolayenko for the consultations provided
References
- 1.Official website of the European Union. Accessed June 7, 2024. https://european-union.europa.eu/index_en.
- 2.Gentile N, Carrasquer F, Marco-Fuertes A, Marin C. Backyard poultry: Exploring non-intensive production systems. Poult Sci. 2024;103(2):103284.
- 3.Delanglez F, Ampe B, Watteyn A, Van Damme LGW, Tuyttens FAM. How do flemish laying hen farmers and private bird keepers comply with and think about measures to control Avian Influenza? Vet Sci. 2024;11(10):475.
- 4.Souvestre M, Delpont M, Guinat C, et al. Backyard poultry flocks in France: A diversity of owners and biosecurity practices. Prev Vet Med. 2021;197:105511.
- 5.Grunkemeyer VL. Zoonoses, public health, and the backyard poultry flock. Vet Clin North Am Exot Anim Pract. 2011;14(3):477-90.
- 6.Rehman S, Effendi MH, Witaningruma AM, et al. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: A review. 2022;11:1321.
- 7.Yadav JP, Tomar P, Singh Y, Khurana SK. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review. Anim Biotechnol. 2022;1711-1720.
- 8.Ramey AM, Hill NJ, DeLiberto TJ, et al. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. J Wildl Manag. 2022;86(2):e22171.
- 9. Animal and Plant Health Inspection Service. Accessed November 29, 2024. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/commercial-backyard-flocks.
- 10. Ayala AJ, Yabsley MJ, Hernandez SM. Review of pathogen transmission at the backyard chicken-wild bird interface. Front Vet Sci. 2020;7:539925.
- 11. McClaughlin E, Elliott S, Jewitt S, et al. UK flockdown: A survey of small scale poultry keepers and their understanding of governmental guidance on highly pathogenic avian influenza (HPAI). Prev Vet Med. 2024;224:106117.
- 12. Brochu NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. J Vet Diagn Invest. 2019;31(3):327-335.
- 13. Mainali C, Houston I. Small poultry flocks in alberta: Demographics and practices. Avian Dis. 2017;61(1):46-54.
- 14. Bensch HM, Lundin D, Tolf C, Waldenström J, Zöttl M. Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal. J Evol Biol. 2024;37(5):577-578.
- 15. Gentile N, Carrasquer F, Marco-Fuertes A, Marin C. Backyard poultry: Exploring non-intensive production systems. Poult Sci. 2024;103(2):103284.
- 16. Ovi F, Zhang L, Nabors H, et al. A compilation of virulence-associated genes that are frequently reported in avian pathogenic Escherichia coli (APEC) compared to other E. coli. J Appl Microbiol. 2023;134(3):lxad014.
- 17. Pinto SC, Aleixo J, Camela K, Chilundo AG, Bila CG. Seroprevalence of infectious bronchitis virus and avian reovirus in free backyard chickens. OJVR, 2022;89(1): 1-4.
- 18. Sato Y, Wakenell PS. Common infectious diseases in backyard poultry. Vet Manual. 2022;1-6.
- 19. Reilly T. Jackson, Percival M. et al. Risk of invasive waterfowl interaction with poultry production: Understanding potential for avian pathogen transmission via species distribution models. Ecol Evol. 2024;14(7):e11647
- 20. Adnyana IM, Utomo B, Eljatin DS, Sudaryati NL. One Health approach and zoonotic diseases in Indonesia: Urgency of implementation and challenges. Narra J. 2023;3(3):e257.
- 21. Peng W, Xu L, Liu L, et al. PCR detection and histopathological analysis of Avian leukemia virus subgroup E type in chicken. 2024;44(3):882-888.
- 22. Muyyarikkandy MS, Parzygnat J, Thakur S. Uncovering changes in microbiome profiles across commercial and backyard poultry farming systems. Microbiol Spectr. 2023;11(5):e0168223.
- 23. Aruwa CE, Pillay C, Nyaga MM, Sabiu S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Anim Sci Biotechnol. 2021;12(1):119.
- 24. Gerba C. Indicator Microorganisms. In: Environmental Microbiology. Maier R, Pepper I, Gerba C. Academic Press, New York, Accessed May 25, 2024.
https://bly.covenantuniversity.edu.ng/ebooks/Environmental_Microbiology/Chapter-23-Indicator-Microorganisms_2015_Environmental-Microbiology.pdf
- 25. Wen X, Chen F, Lin Y, et al. Microbial indicators and their use for monitoring drinking water quality-a review. Sustainability. 2020;12(6):2249.
- 26. Jung B, Hoilat GJ. MacConkey Medium. In: StatPearls. Treasure Island (FL): StatPearls, Accessed May 26, 2024. https://www.ncbi.nlm.nih.gov/books/NBK557394/.
- 27. Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon. 2023;9(12):e22351.
- 28. Motlagh AM, Yang Z. Detection and occurrence of indicator organisms and pathogens. Water Environ Res. 2019;91(10):1402-1408.
- 29. Lei B, Xu Y, Lei Y, et al. CRAMdb: A comprehensive database for composition and roles of microbiome in animals. Nucleic Acids Res. 2023;51(D1):D700-D707.
- 30. Noble RT, Moore DF, Leecaster MK, McGee CD, Weisberg SB. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 2003;37(7):1637-1643.
- 31. Ribeiro J, Silva V, Monteiro A, et al. Antibiotic resistance among gastrointestinal bacteria in broilers: a review focused on enterococcus spp. and Escherichia coli. Animals. 2023;13(8):1362.
- 32. Baccouri O, Boukerb AM, Farhat LB, et al. Probiotic potential and safety evaluation of enterococcus faecalis OB14 and OB15, isolated from traditional tunisian testouri cheese and rigouta, using physiological and genomic analysis. Front Microbiol. 2019;10:881
- 33. Graham K, Stack H, Rea R. Safety, beneficial and technological properties of enterococci for use in functional food applications - a review. Crit Rev Food Sci Nutr. 2020;60(22):3836-3861.
- 34. Derksen T, Lampron R, Hauck R, Pitesky M, Gallardo RA. Biosecurity assessment and seroprevalence of respiratory diseases in backyard poultry flocks located close to and far from commercial premises. Avian Dis. 2018;62(1):1-5.
- 35. Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J. The microbiome of animals: implications for conservation biology. Int J Genomics. 2016;2016:5304028.
- 36. Schwaiger K, Schmied EM, Bauer J. Comparative analysis of antibiotic resistance characteristics of Gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health. 2008;55(7):331-341.
- 37. Parzygnat JL, Crespo R, Fosnaught M, et al. Megaplasmid dissemination in multidrug-resistant salmonella serotypes from backyard and commercial broiler production systems in the southeastern united states. Foodborne Pathog Dis. 2024;18.
Indicator Microflora of Ducks and Chickens in Home Farm Conditions
Year 2025,
Volume: 20 Issue: 1, 24 - 32, 29.04.2025
Liliіa Vygovska
,
Artem Ushkalov
,
Liliana Davydovska
,
Volodymyr Melnyk
,
Valerii Ushkalov
,
Oleksii Shevchenko
Abstract
The aim of this study was to determine the risks of the circulation of zoonotic bacteria in poultry in homesteads. We selected for the study litter samples (10 samples each) of Muscovy ducks and chickens (Hisex breed) aged 100-110 days. The samples were examined using certified nutrient media and equipment in accordance with international standards: ISO 6887-1:2017; ISO 21528-1:2017; ISO 11290-1:2017; ISO 10273:2017; ISO 6579-1:2017; ISO/FDIS 7218; and DSTU 8534:2015. Litter samples from clinically healthy ducks and chickens were examined for the detection of potentially pathogenic bacteria of the Enterobacteriaceae family, Listeria spp., Enterococcus spp., Pseudomonas aeruginosa. In the studied biomaterial, representatives of Klebsiella spp., Yersinia spp., Salmonella spp., Pseudomonas aeruginosa, Listeria spp. were not detected. The content of Escherichia coli (5.0x105 CFU/g and 6.7x106 CFU/g) and Enterococcus faecalis (2.4x108 CFU/g and 1.2x108 CFU/g), respectively, in chicken and duck litter samples is considered physiological. Bacteriological examination of the droppings of clinically healthy chickens and Muscovy ducks, raised on a free-range homestead revealed no carriers of pathogenic bacteria, indicating that there are no possible risks of unchecked zoonotic pathogen spread from the consumption of "backyard" poultry products. Escherichia coli and Enterococcus faecalis in litter samples are considered to be physiological.
Project Number
Research was carried out with the financial support of the Ministry of Education and Science of Ukraine under project 110/4-pr-2023
References
- 1.Official website of the European Union. Accessed June 7, 2024. https://european-union.europa.eu/index_en.
- 2.Gentile N, Carrasquer F, Marco-Fuertes A, Marin C. Backyard poultry: Exploring non-intensive production systems. Poult Sci. 2024;103(2):103284.
- 3.Delanglez F, Ampe B, Watteyn A, Van Damme LGW, Tuyttens FAM. How do flemish laying hen farmers and private bird keepers comply with and think about measures to control Avian Influenza? Vet Sci. 2024;11(10):475.
- 4.Souvestre M, Delpont M, Guinat C, et al. Backyard poultry flocks in France: A diversity of owners and biosecurity practices. Prev Vet Med. 2021;197:105511.
- 5.Grunkemeyer VL. Zoonoses, public health, and the backyard poultry flock. Vet Clin North Am Exot Anim Pract. 2011;14(3):477-90.
- 6.Rehman S, Effendi MH, Witaningruma AM, et al. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: A review. 2022;11:1321.
- 7.Yadav JP, Tomar P, Singh Y, Khurana SK. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review. Anim Biotechnol. 2022;1711-1720.
- 8.Ramey AM, Hill NJ, DeLiberto TJ, et al. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. J Wildl Manag. 2022;86(2):e22171.
- 9. Animal and Plant Health Inspection Service. Accessed November 29, 2024. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/commercial-backyard-flocks.
- 10. Ayala AJ, Yabsley MJ, Hernandez SM. Review of pathogen transmission at the backyard chicken-wild bird interface. Front Vet Sci. 2020;7:539925.
- 11. McClaughlin E, Elliott S, Jewitt S, et al. UK flockdown: A survey of small scale poultry keepers and their understanding of governmental guidance on highly pathogenic avian influenza (HPAI). Prev Vet Med. 2024;224:106117.
- 12. Brochu NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. J Vet Diagn Invest. 2019;31(3):327-335.
- 13. Mainali C, Houston I. Small poultry flocks in alberta: Demographics and practices. Avian Dis. 2017;61(1):46-54.
- 14. Bensch HM, Lundin D, Tolf C, Waldenström J, Zöttl M. Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal. J Evol Biol. 2024;37(5):577-578.
- 15. Gentile N, Carrasquer F, Marco-Fuertes A, Marin C. Backyard poultry: Exploring non-intensive production systems. Poult Sci. 2024;103(2):103284.
- 16. Ovi F, Zhang L, Nabors H, et al. A compilation of virulence-associated genes that are frequently reported in avian pathogenic Escherichia coli (APEC) compared to other E. coli. J Appl Microbiol. 2023;134(3):lxad014.
- 17. Pinto SC, Aleixo J, Camela K, Chilundo AG, Bila CG. Seroprevalence of infectious bronchitis virus and avian reovirus in free backyard chickens. OJVR, 2022;89(1): 1-4.
- 18. Sato Y, Wakenell PS. Common infectious diseases in backyard poultry. Vet Manual. 2022;1-6.
- 19. Reilly T. Jackson, Percival M. et al. Risk of invasive waterfowl interaction with poultry production: Understanding potential for avian pathogen transmission via species distribution models. Ecol Evol. 2024;14(7):e11647
- 20. Adnyana IM, Utomo B, Eljatin DS, Sudaryati NL. One Health approach and zoonotic diseases in Indonesia: Urgency of implementation and challenges. Narra J. 2023;3(3):e257.
- 21. Peng W, Xu L, Liu L, et al. PCR detection and histopathological analysis of Avian leukemia virus subgroup E type in chicken. 2024;44(3):882-888.
- 22. Muyyarikkandy MS, Parzygnat J, Thakur S. Uncovering changes in microbiome profiles across commercial and backyard poultry farming systems. Microbiol Spectr. 2023;11(5):e0168223.
- 23. Aruwa CE, Pillay C, Nyaga MM, Sabiu S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Anim Sci Biotechnol. 2021;12(1):119.
- 24. Gerba C. Indicator Microorganisms. In: Environmental Microbiology. Maier R, Pepper I, Gerba C. Academic Press, New York, Accessed May 25, 2024.
https://bly.covenantuniversity.edu.ng/ebooks/Environmental_Microbiology/Chapter-23-Indicator-Microorganisms_2015_Environmental-Microbiology.pdf
- 25. Wen X, Chen F, Lin Y, et al. Microbial indicators and their use for monitoring drinking water quality-a review. Sustainability. 2020;12(6):2249.
- 26. Jung B, Hoilat GJ. MacConkey Medium. In: StatPearls. Treasure Island (FL): StatPearls, Accessed May 26, 2024. https://www.ncbi.nlm.nih.gov/books/NBK557394/.
- 27. Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon. 2023;9(12):e22351.
- 28. Motlagh AM, Yang Z. Detection and occurrence of indicator organisms and pathogens. Water Environ Res. 2019;91(10):1402-1408.
- 29. Lei B, Xu Y, Lei Y, et al. CRAMdb: A comprehensive database for composition and roles of microbiome in animals. Nucleic Acids Res. 2023;51(D1):D700-D707.
- 30. Noble RT, Moore DF, Leecaster MK, McGee CD, Weisberg SB. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 2003;37(7):1637-1643.
- 31. Ribeiro J, Silva V, Monteiro A, et al. Antibiotic resistance among gastrointestinal bacteria in broilers: a review focused on enterococcus spp. and Escherichia coli. Animals. 2023;13(8):1362.
- 32. Baccouri O, Boukerb AM, Farhat LB, et al. Probiotic potential and safety evaluation of enterococcus faecalis OB14 and OB15, isolated from traditional tunisian testouri cheese and rigouta, using physiological and genomic analysis. Front Microbiol. 2019;10:881
- 33. Graham K, Stack H, Rea R. Safety, beneficial and technological properties of enterococci for use in functional food applications - a review. Crit Rev Food Sci Nutr. 2020;60(22):3836-3861.
- 34. Derksen T, Lampron R, Hauck R, Pitesky M, Gallardo RA. Biosecurity assessment and seroprevalence of respiratory diseases in backyard poultry flocks located close to and far from commercial premises. Avian Dis. 2018;62(1):1-5.
- 35. Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J. The microbiome of animals: implications for conservation biology. Int J Genomics. 2016;2016:5304028.
- 36. Schwaiger K, Schmied EM, Bauer J. Comparative analysis of antibiotic resistance characteristics of Gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health. 2008;55(7):331-341.
- 37. Parzygnat JL, Crespo R, Fosnaught M, et al. Megaplasmid dissemination in multidrug-resistant salmonella serotypes from backyard and commercial broiler production systems in the southeastern united states. Foodborne Pathog Dis. 2024;18.