Review
BibTex RIS Cite

Sportif Performans ile Mitokondri ve Gen İlişkisinin İncelenmesi

Year 2024, Volume: 3 Issue: 2, 66 - 80, 19.08.2024
https://doi.org/10.70007/yalovaspor.1509439

Abstract

Bu çalışmanın amacı, sportif performans ile mitokondri ve gen arasındaki ilişkinin incelenmesidir. Çalışma; Pubmed-Central, Pubmed ve Google Akademik internet veri tabanlarında yer alan kayıtlı çalışmaların özetlerini içermektedir. Sportif performans çoğu faktörden etkilenen multifaktöriyel bir fenomendir. Bu faktörlerden biri olmaya aday genetik, spor performansı üzerinde önemli bir güce sahip olabilir. Şimdiye kadar, spor ve genetik arasındaki ilişkiye yönelik birçok genetik belirteç tanımlanmıştır. Bunlar otozom, gonozom kromozomlarda ve mitokondride lokalize olabilir. Mitokondri kendi DNA'sı, RNA'sı ve ribozomu olan çift katmanlı bir hücre organelidir. mtDNA, çekirdekte bulunan DNA’ya kıyasla hem daha az nükleotitli hem de daha az gene sahiptir. Buna rağmen mtDNA’daki genler sportif performans üzerinde kritik öneme sahip olabilir. Çalışma sonunda mtDNA'daki haplogrupların ve bazı polimorfizmlerin sportif performans üzerinde önemli regülatörler olabileceği sonucu tespit edilmiştir. Bu durum, sporcuların düşük, orta ve yüksek şiddetteki performans karakteristiklerini önemli ölçüde belirleyebilir. Sonuç olarak, mtDNA'daki genler mitokondriyal biyogenezi etkileyerek, sporcuların dayanıklılık kapasiteleri üzerinde önemli etkilere sahip olabilir. Bu alanda sağlam metodolojilere dayalı klinik çalışmaların yapılması spor bilimlerine değerli katkılar sağlayabilir.

References

  • Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41-54. doi: 10.1159/000445240
  • Ahmetov, I. I., Hall , E. C., Semenova, E. A., Pranckevičienė, E., & Ginevičienė, V. (2022). Advances in sports genomics. Advances Clinical Chemistry, 107, 215-263. doi: 10.1016/bs.acc.2021.07.004
  • Akın, Ş., Kubat, G. B., ve Demirel, H. A. (2021). Egzersiz, mitokondriyal biyogenez ve kullanılmama atrofisi. Spor Hekimliği Dergisi, 56(2), 091-097. doi: 10.47447/tjsm.0491
  • Aktop, A., ve Seferoğlu, F. (2014). Sportif performans açısından nöro-geribildirim. Spor ve Performans Araştırmaları Dergisi, 5(2), 23-36. doi.org/10.17155/spd.42159
  • Allemailem, K. S., Almatroudi, A., Alsahli, M. A., Aljaghwani, A., El-Kady, A. M., Rahmani, A. H., & Khan, A. A. (2021). Novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug–loaded nanoformulations. International Journal of Nanomedicine, 16, 3907-3936. doi: 10.2147/IJN.S303832
  • Baltazar-Martins, G., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Ruiz-Moreno, C., Moreno-Pérez, V., López-Samanes, Á., & Coso, J. D. (2020). Effect of ACTN3 genotype on sports performance, exercise-induced muscle damage, and injury epidemiology. Sports (Basel), 8(7), 2-12. doi: 10.3390/sports8070099
  • Banfi , G., Colombini, A., Lombardi, G., & Lubkowska, A. (2012). Metabolic markers in sports medicine. Advances in Clinical Chemistry, 56, 1-54. doi: 10.1016/b978-0-12-394317-0.00015-7
  • Baykara, O., Sahin, S. K., Akbas , F., Guven, M., & Onaran, I. (2016). The effects of mitochondrial DNA deletion and copy number variations on different exercise intensities in highly trained swimmers. Cellular and Molecular Biology, 62(12), 109-115. doi: 10.14715/cmb/2016.62.12.19
  • Bayraktar, B., ve Kurtoğlu, M. (2004). Doping ve futbolda performansı artırma yöntemleri. İçinde T. Atasü, İ. Yücesir ve B. Bayraktar (Eds.), Sporda performans ve performansı artırma yöntemleri (s. 270-271), Ajansmat. Bayraktar, B., ve Kurtoğlu, M. (2009). Sporda performans, etkili faktörler, değerlendirilmesi ve artırılması. Klinik Gelişim, 22(1), 16-24.
  • Büyükuslu, N., ve Yiğitbaşı, T. (2015). Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences, 5(3) , 197-203. doi: 10.5455/musbed.20150604061607
  • Castro, M. G., Terrados, N., Reguero, J. R., Alvarez, V., & Coto, E. (2007). Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion, 7(5), 354-357. doi: 10.1016/j.mito.2007.06.002
  • Chen, Q., Ma, L. H., & Chen, J. Q. (2000). Analysis on genetic polymorphism of mtDNA in endurance athletes and sedentary subjects. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 16(4), 327-330.
  • Clemente-Suárez, V. J., Bustamante-Sanchez, Á., Mielgo-Ayuso, J., Martínez-Guardado, I., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Antioxidants and sports performance. Nutrients, 15(10), 2-35. doi.org/10.3390/nu15102371
  • Daussin, F. N., Heyman, E., & Burelle, Y. (2021). Effects of (-)-epicatechin on mitochondria. Nutrition Reviews, 79(1), 25-41. doi: 10.1093/nutrit/nuaa094
  • Dinç, N., ve Gökmen, M. H. (2019). Atletik performans ve spor genetiği. Manisa Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(2), 127-137. doi: 10.34087/cbusbed.529159
  • Distefano, G., & Goodpaster, B. H. (2018). Effects of exercise and aging on skeletal muscle. Cold Spring Harbor Perspectives Medicine, 8(3), 1-15. doi: 10.1101/cshperspect.a029785
  • Doğan, N., & Çoban, N. (2023). Koroner arter hastalığında mitokondri işlev bozukluğunun genetik açıdan incelenmesi: Bölüm 1. Türk Kardiyoloji Derneği Arşivi, 51(2), 135-145. doi: 10.5543/tkda.2022.39448
  • Doğgün, M. (2022). Spor branşına yönlendirmede genetik testlerin stratejik rolü. The Journal of Turkish Sport Science, 5(2), 155-167. doi.org/10.46385/tsbd.1050575
  • Eken, B. F., Yayman, D., Yayman, Y., Sercan, C., Kapıcı, S., ve Ulucan, K. (2018). Spor genomiğinde mitokondriyal DNA çalışmaları. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 9(4), 339-343. doi.org/10.31067/0.2018.53
  • Eroğlu, O., ve Zileli, R. (2015). Genetik Faktörlerin Sportif Performansa Etkisi. Uluslararası Spor, Egzersiz ve Antrenman Bilimi Dergisi, 1(1), 63-76. doi: 10.18826/ijsets.65225
  • Eynon, N., Morán, M., Birk, R., & Lucia, A. (2011). The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiological Genomics, 43(13), 789-798. doi: 10.1152/physiolgenomics.00029.2011
  • Flockhart, M., Nilsson, L. C., Tais , S., Ekblom, B., Apró, W., & Larsen, F. J. (2021). Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metabolism, 33(5), 957-970. doi: 10.1016/j.cmet.2021.02.017
  • Fritzen, A. M., Thøgersen, F. B., Thybo, K., Vissing, C. R., Krag, T. O., Ruiz-Ruiz, C., & Høeg, L. D. (2019). Adaptations in mitochondrial enzymatic activity occurs independent of genomic dosage in response to aerobic exercise training and deconditioning in human skeletal muscle. Cells, 8(3), 2-16. doi: 10.3390/cells8030237
  • Giorgi, C., Marchi, S., Simoes, I. C., Ren, Z., Morciano, G., Perrone, M., & Patalas-Krawczyk, P. (2018). Mitochondria and reactive oxygen species in aging and age-related diseases. International Review of Cell and Molecular Biology, 340, 209-344. doi: 10.1016/bs.ircmb.2018.05.006
  • Gönenç, S. (1997). Egzersiz ve oksidan stres. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi, 2(1), 26-38.
  • Güleç, D. (2017). Reaktif oksijen türlerinin üretiminde süksinat dehidrogenaz enziminin rolü. Turkiye Klinikleri Journal of Internal Medicine, 2(2), 57-63. doi: 10.5336/intermed.2017-54816
  • Kahya, S. (2023). Sporda esneklik ve gen ilişkisinin incelenmesi. Yalova Üniversitesi Spor Bilimleri Dergisi, 2(2), 55-66.
  • Karabulut, H., ve Gülay, M. Ş. (2016). Serbest radikaller. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1), 50-59.
  • Kararkuş, S., & Kılınç, F. (2006). Postür ve sportif performans. Kastamonu Eğitim Dergisi, 14(1), 309-322.
  • Karayılan, Ş. Ş., Dönmez, G., Babayeva, N., Yargıç, M. P., Korkusuz, F., ve Doral, M. N. (2013). Spor yaralanmaları ve genetik. Spor Hekimliği Dergisi, 48(4), 139-146.
  • Kenney, C. M., Chwa, M., Atilano, S. R., Pavlis, J. M., Falatoonzadeh, P., Ramirez, C., & Soe, K. (2013). Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS One, 8(1), 1-9. doi: 10.1371/journal.pone.0054339
  • Kiiskilä, J., Moilanen , J. S., Kytövuori, L., Niemi , A.-K., & Majamaa, K. (2019). Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics, 20(1), 2-7. doi: 10.1186/s12864-019-6171-6
  • Kim, K. C., Cho, H. I., & Kim, W. (2012). MtDNA haplogroups and elite Korean athlete status. International Journal of Sports Medicine, 33(1), 76-80. doi: 10.1055/s-0031-1285866
  • Koç, F., ve Sarıca, Y. (2003). Mitokondri; Biyokimyası. Arşiv Kaynak Tarama Dergisi, 12(5), 1-13.
  • Koku, F. E. (2015). Sportif performansın genetik ile ilişkisi. Spor Hekimliği Dergisi, 50(1), 21-30.
  • Koma, R., Shibaguchi, T., López, C. P., Oka, T., Jue, T., Takakura, H., & Masuda, K. (2021). Localization of myoglobin in mitochondria: implication in regulation of mitochondrial respiration in rat skeletal muscle. Physiological Reports, 9(5), 1-12. doi: 10.14814/phy2.14769
  • Kumagai, H., Miller, B., Kim, S.-J., Leelaprachakul, N., Kikuchi, N., Yen, K., & Cohen, P. (2023). Novel insights into mitochondrial DNA: Mitochondrial microproteins and mtDNA variants modulate athletic performance and age-related diseases. Genes, 14(2), 2-18. doi.org/10.3390/genes14020286
  • Lewis, N. A., Towey, C., Bruinvels, G., Howatson , G., & Pedlar, C. R. (2016). Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Applied Physiology, Nutrition, and Metabolism, 41(10), 1026-1032. doi: 10.1139/apnm-2016-0208
  • Malm, C., Jakobsson, J., & Isaksson, A. (2019). Physical activity and sports-real health benefits: A review with insight into the public health of Sweden. Sports, 7 (5), 2-28. doi.org/10.3390/sports7050127
  • Maruszak, A., Adamczyk, J. G., Siewierski, M., Sozański,, H., Gajewski, A., & Żekanowski, C. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand J Med Sci Sports, 24(2), 311-318. doi: 10.1111/sms.12012
  • Metin, S., Az, A., ve Ertin, H. (2020). İki kadın bir bebek: Tıbbi, etik ve hukuki perspektiflerden mitokondri değiştirme terapisi. Anadolu Kliniği Tıp Bilimleri Dergisi, 25(2), 139-151. doi: 10.21673/anadoluklin.673832
  • Mikami, E., Fuku, N., Takahashi, H., Ohiwa, N., Pitsiladis, Y. P., Higuchi, M., & Tanaka, M. (2012). Polymorphisms in the control region of mitochondrial DNA associated with elite Japanese athlete status. Scandinavian Journal of Medicine & Science in Sport, 23(5), 593-599. doi.org/10.1111/j.1600-0838.2011.01424.x
  • Morrish, F., & Hockenbery, D. (2014). MYC and mitochondrial biogenesis. Cold Spring Harbor Perspectives in Medicine, 4(5), 1-16. doi: 10.1101/cshperspect.a014225
  • Murakami, H., Soma, R., Hayashi, J., Katsuta, S., Matsuda, M., Ajisaka, R., & Kuno, S. (2001). Relationship between mitochondrial DNA polymorphism and the individual differences in aerobic performance. The Japanese Journal of Physiology, 51(5), 563-568. doi: 10.2170/jjphysiol.51.563
  • Niemi , A.-K., & Majamaa, K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics, 13(8), 965-969. doi: 10.1038/sj.ejhg.5201438
  • Nogales-Gadea, G., Pinós, T., Ruiz, J. R., Marzo, P. F., Fiuza-Luces, C., López-Gallardo, E., & Arenas, J. (2011). Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion, 11(6), 905-908. doi: 10.1016/j.mito.2011.08.002
  • Ohlsson, L., Hall, A., Lindahl , H., Danielsson, R., Gustafsson, A., Lavant, E., & Ljunggren, L. (2020). Increased level of circulating cell-free mitochondrial DNA due to a single bout of strenuous physical exercise. European Journal of Applied Physiology, 120(4), 897-905. doi: 10.1007/s00421-020-04330-8
  • Pérez-Treviño, P., Velásquez, M., & García, N. (2020). Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Disease, 1866(6), 2-13. doi: 10.1016/j.bbadis.2020.165761
  • Picca, A., Calvani, R., Coelho-Junior, H. J., & Marzetti , E. (2021). Cell death and inflammation: The role of mitochondria in health and disease. Cells, 10(3), 2-17. doi: 10.3390/cells10030537
  • Purhonen, J., Klefström, J., & Kallijärvi, J. (2023). MYC-an emerging player in mitochondrial diseases. Frontiers in Cell and Developmental Biology, 11, 1-12. doi.org/10.3389/fcell.2023.1257651
  • Rankinen, T., Pérusse, L., Rauramaa, R., Rivera, M. A., Wolfarth, B., & Bouchard, C. (2001). The human gene map for performance and health-related fitness phenotypes. Medicine and Science Sports Exercise, 33(6), 855-867. doi: 10.1097/00005768-200106000-00001
  • Safdar, A., Bourgeois, J. M., Ogborn, D. I., Little, J. P., Hettinga, B. P., Akhtar, M., & Kujoth, G. C. (2011). Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proceedings of the National Academy of Sciences, 108(10), 4135-4140. doi: 10.1073/pnas.1019581108
  • Scott, R. A., Fuku, N., Onywera, V. O., Boit, M., Wilson, R. H., Tanaka, M., & Pitsiladis, Y. P. (2009). Mitochondrial haplogroups associated with elite Kenyan athlete status. Medicine & Science in Sports & Exercise, 41(1), 123-128. doi: 10.1249/MSS.0b013e31818313a2
  • Semenova, E. A., Hall, E. C., & Ahmetov, I. I. (2023). Genes and athletic performance: The 2023 update. Genes (Basel), 14(6), 2-32. doi: 10.3390/genes14061235
  • Şahin, E., ve Alver, A. (2022). Mitohormesis ve düzenlenme mekanizmaları. Farabi Tıp Dergisi, 1(1), 21-26.
  • Taivassalo, T., & Haller, R. G. (2004). Implications of exercise training in mtDNA defects use it or lose it? Biochimica et Biophysica Acta, 1659(2-3), 221-231. doi: 10.1016/j.bbabio.2004.09.007
  • Taivassalo, T., Gardner, J. L., Taylor, R. W., Schaefer, A. M., Newman, J., Barron, M. J., & Turnbull, D. M. (2006). Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 129(12) , 3391–3401. doi: 10.1093/brain/awl282
  • Thurairajah , K., Briggs, G. D., & Balogh, Z. J. (2018). The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. European Journal of Trauma and Emergency Surgery, 44(3), 325-334. doi: 10.1007/s00068-018-0954-3
  • Trumpff, C., Michelson, J., Lagranha, C. J., Taleon, V., Karan, K. R., Sturm, G., & Picard , M. (2021). Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion, 59, 225-245. doi: 10.1016/j.mito.2021.04.002
  • Varillas-Delgado, D., Coso, J. D., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Muñoz, A., Maestro, A., & Morencos, E. (2022). Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. European Journal Applied Physiology, 122(8), 1811-1830. doi: 10.1007/s00421-022-04945-z
  • Wan, W., Zhang, L., Lin, Y., Rao, X., Wang, X., Hua, F., & Ying, J. (2023). Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. Journal of Translational Medicine, 21(1), 2-13. doi: 10.1186/s12967-023-03885-2
  • Yamada, Y., Takano, Y., Satrialdi, Abe, J., Hibino, M., & Harashima, H. (2020). Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules, 10(1), 2-23. doi.org/10.3390/biom10010083
  • Yıldız, S. A. (2012). Aerobik ve anaerobik kapasitenin anlamı nedir? Solunum Dergisi, 14(1), 1-8.
  • Zanini, G., Gaetano, A. D., Selleri, V., Savino, G., Cossarizza, A., Pinti, M., & Nasi, M. (2021). Mitochondrial DNA and exercise: Implications for health and injuries in sports. Cells, 10(10, 2-17. doi: 10.3390/cells10102575

The Investigation of Relationship Between Sporting Performance and Mitochondria and Genes

Year 2024, Volume: 3 Issue: 2, 66 - 80, 19.08.2024
https://doi.org/10.70007/yalovaspor.1509439

Abstract

The aim of this study was to investigate the relationship between sports performance and mitochondria and gene. The study included the summarization of the studies registered in Pubmed-Central, Pubmed and Google Scholar internet databases. Sporting performance is a multifactorial phenomenon that is affected by most factors. Genetics, which are candidate to be one of these factors, may have a significant power on sports performance. So far, many genetic markers have been identified for the relationship between sport and genetics. These can be localized in the autosome, gonosome chromosomes and mitochondria. Mitochondria is a double-layered cell organelle with its own DNA, RNA, and ribosome. mtDNA has both fewer nucleotides and a smaller amount of genes compared to DNA in the nucleus. However, genes in mtDNA may be critical to athletic performance. At the end of the study, it was determined that haplogroups and some polymorphisms in mtDNA may be important regulators on sports performance. This can significantly determine the low, medium and high intensity performance characteristics of athletes. As a result, genes in mtDNA may have significant effects on athletes' endurance capacities by influencing mitochondrial biogenesis. Conducting clinical studies based on robust methodologies in this field may make valuable contributions to sports sciences.

References

  • Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41-54. doi: 10.1159/000445240
  • Ahmetov, I. I., Hall , E. C., Semenova, E. A., Pranckevičienė, E., & Ginevičienė, V. (2022). Advances in sports genomics. Advances Clinical Chemistry, 107, 215-263. doi: 10.1016/bs.acc.2021.07.004
  • Akın, Ş., Kubat, G. B., ve Demirel, H. A. (2021). Egzersiz, mitokondriyal biyogenez ve kullanılmama atrofisi. Spor Hekimliği Dergisi, 56(2), 091-097. doi: 10.47447/tjsm.0491
  • Aktop, A., ve Seferoğlu, F. (2014). Sportif performans açısından nöro-geribildirim. Spor ve Performans Araştırmaları Dergisi, 5(2), 23-36. doi.org/10.17155/spd.42159
  • Allemailem, K. S., Almatroudi, A., Alsahli, M. A., Aljaghwani, A., El-Kady, A. M., Rahmani, A. H., & Khan, A. A. (2021). Novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug–loaded nanoformulations. International Journal of Nanomedicine, 16, 3907-3936. doi: 10.2147/IJN.S303832
  • Baltazar-Martins, G., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Ruiz-Moreno, C., Moreno-Pérez, V., López-Samanes, Á., & Coso, J. D. (2020). Effect of ACTN3 genotype on sports performance, exercise-induced muscle damage, and injury epidemiology. Sports (Basel), 8(7), 2-12. doi: 10.3390/sports8070099
  • Banfi , G., Colombini, A., Lombardi, G., & Lubkowska, A. (2012). Metabolic markers in sports medicine. Advances in Clinical Chemistry, 56, 1-54. doi: 10.1016/b978-0-12-394317-0.00015-7
  • Baykara, O., Sahin, S. K., Akbas , F., Guven, M., & Onaran, I. (2016). The effects of mitochondrial DNA deletion and copy number variations on different exercise intensities in highly trained swimmers. Cellular and Molecular Biology, 62(12), 109-115. doi: 10.14715/cmb/2016.62.12.19
  • Bayraktar, B., ve Kurtoğlu, M. (2004). Doping ve futbolda performansı artırma yöntemleri. İçinde T. Atasü, İ. Yücesir ve B. Bayraktar (Eds.), Sporda performans ve performansı artırma yöntemleri (s. 270-271), Ajansmat. Bayraktar, B., ve Kurtoğlu, M. (2009). Sporda performans, etkili faktörler, değerlendirilmesi ve artırılması. Klinik Gelişim, 22(1), 16-24.
  • Büyükuslu, N., ve Yiğitbaşı, T. (2015). Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences, 5(3) , 197-203. doi: 10.5455/musbed.20150604061607
  • Castro, M. G., Terrados, N., Reguero, J. R., Alvarez, V., & Coto, E. (2007). Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion, 7(5), 354-357. doi: 10.1016/j.mito.2007.06.002
  • Chen, Q., Ma, L. H., & Chen, J. Q. (2000). Analysis on genetic polymorphism of mtDNA in endurance athletes and sedentary subjects. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 16(4), 327-330.
  • Clemente-Suárez, V. J., Bustamante-Sanchez, Á., Mielgo-Ayuso, J., Martínez-Guardado, I., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Antioxidants and sports performance. Nutrients, 15(10), 2-35. doi.org/10.3390/nu15102371
  • Daussin, F. N., Heyman, E., & Burelle, Y. (2021). Effects of (-)-epicatechin on mitochondria. Nutrition Reviews, 79(1), 25-41. doi: 10.1093/nutrit/nuaa094
  • Dinç, N., ve Gökmen, M. H. (2019). Atletik performans ve spor genetiği. Manisa Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(2), 127-137. doi: 10.34087/cbusbed.529159
  • Distefano, G., & Goodpaster, B. H. (2018). Effects of exercise and aging on skeletal muscle. Cold Spring Harbor Perspectives Medicine, 8(3), 1-15. doi: 10.1101/cshperspect.a029785
  • Doğan, N., & Çoban, N. (2023). Koroner arter hastalığında mitokondri işlev bozukluğunun genetik açıdan incelenmesi: Bölüm 1. Türk Kardiyoloji Derneği Arşivi, 51(2), 135-145. doi: 10.5543/tkda.2022.39448
  • Doğgün, M. (2022). Spor branşına yönlendirmede genetik testlerin stratejik rolü. The Journal of Turkish Sport Science, 5(2), 155-167. doi.org/10.46385/tsbd.1050575
  • Eken, B. F., Yayman, D., Yayman, Y., Sercan, C., Kapıcı, S., ve Ulucan, K. (2018). Spor genomiğinde mitokondriyal DNA çalışmaları. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 9(4), 339-343. doi.org/10.31067/0.2018.53
  • Eroğlu, O., ve Zileli, R. (2015). Genetik Faktörlerin Sportif Performansa Etkisi. Uluslararası Spor, Egzersiz ve Antrenman Bilimi Dergisi, 1(1), 63-76. doi: 10.18826/ijsets.65225
  • Eynon, N., Morán, M., Birk, R., & Lucia, A. (2011). The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiological Genomics, 43(13), 789-798. doi: 10.1152/physiolgenomics.00029.2011
  • Flockhart, M., Nilsson, L. C., Tais , S., Ekblom, B., Apró, W., & Larsen, F. J. (2021). Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metabolism, 33(5), 957-970. doi: 10.1016/j.cmet.2021.02.017
  • Fritzen, A. M., Thøgersen, F. B., Thybo, K., Vissing, C. R., Krag, T. O., Ruiz-Ruiz, C., & Høeg, L. D. (2019). Adaptations in mitochondrial enzymatic activity occurs independent of genomic dosage in response to aerobic exercise training and deconditioning in human skeletal muscle. Cells, 8(3), 2-16. doi: 10.3390/cells8030237
  • Giorgi, C., Marchi, S., Simoes, I. C., Ren, Z., Morciano, G., Perrone, M., & Patalas-Krawczyk, P. (2018). Mitochondria and reactive oxygen species in aging and age-related diseases. International Review of Cell and Molecular Biology, 340, 209-344. doi: 10.1016/bs.ircmb.2018.05.006
  • Gönenç, S. (1997). Egzersiz ve oksidan stres. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi, 2(1), 26-38.
  • Güleç, D. (2017). Reaktif oksijen türlerinin üretiminde süksinat dehidrogenaz enziminin rolü. Turkiye Klinikleri Journal of Internal Medicine, 2(2), 57-63. doi: 10.5336/intermed.2017-54816
  • Kahya, S. (2023). Sporda esneklik ve gen ilişkisinin incelenmesi. Yalova Üniversitesi Spor Bilimleri Dergisi, 2(2), 55-66.
  • Karabulut, H., ve Gülay, M. Ş. (2016). Serbest radikaller. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1), 50-59.
  • Kararkuş, S., & Kılınç, F. (2006). Postür ve sportif performans. Kastamonu Eğitim Dergisi, 14(1), 309-322.
  • Karayılan, Ş. Ş., Dönmez, G., Babayeva, N., Yargıç, M. P., Korkusuz, F., ve Doral, M. N. (2013). Spor yaralanmaları ve genetik. Spor Hekimliği Dergisi, 48(4), 139-146.
  • Kenney, C. M., Chwa, M., Atilano, S. R., Pavlis, J. M., Falatoonzadeh, P., Ramirez, C., & Soe, K. (2013). Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS One, 8(1), 1-9. doi: 10.1371/journal.pone.0054339
  • Kiiskilä, J., Moilanen , J. S., Kytövuori, L., Niemi , A.-K., & Majamaa, K. (2019). Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics, 20(1), 2-7. doi: 10.1186/s12864-019-6171-6
  • Kim, K. C., Cho, H. I., & Kim, W. (2012). MtDNA haplogroups and elite Korean athlete status. International Journal of Sports Medicine, 33(1), 76-80. doi: 10.1055/s-0031-1285866
  • Koç, F., ve Sarıca, Y. (2003). Mitokondri; Biyokimyası. Arşiv Kaynak Tarama Dergisi, 12(5), 1-13.
  • Koku, F. E. (2015). Sportif performansın genetik ile ilişkisi. Spor Hekimliği Dergisi, 50(1), 21-30.
  • Koma, R., Shibaguchi, T., López, C. P., Oka, T., Jue, T., Takakura, H., & Masuda, K. (2021). Localization of myoglobin in mitochondria: implication in regulation of mitochondrial respiration in rat skeletal muscle. Physiological Reports, 9(5), 1-12. doi: 10.14814/phy2.14769
  • Kumagai, H., Miller, B., Kim, S.-J., Leelaprachakul, N., Kikuchi, N., Yen, K., & Cohen, P. (2023). Novel insights into mitochondrial DNA: Mitochondrial microproteins and mtDNA variants modulate athletic performance and age-related diseases. Genes, 14(2), 2-18. doi.org/10.3390/genes14020286
  • Lewis, N. A., Towey, C., Bruinvels, G., Howatson , G., & Pedlar, C. R. (2016). Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Applied Physiology, Nutrition, and Metabolism, 41(10), 1026-1032. doi: 10.1139/apnm-2016-0208
  • Malm, C., Jakobsson, J., & Isaksson, A. (2019). Physical activity and sports-real health benefits: A review with insight into the public health of Sweden. Sports, 7 (5), 2-28. doi.org/10.3390/sports7050127
  • Maruszak, A., Adamczyk, J. G., Siewierski, M., Sozański,, H., Gajewski, A., & Żekanowski, C. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand J Med Sci Sports, 24(2), 311-318. doi: 10.1111/sms.12012
  • Metin, S., Az, A., ve Ertin, H. (2020). İki kadın bir bebek: Tıbbi, etik ve hukuki perspektiflerden mitokondri değiştirme terapisi. Anadolu Kliniği Tıp Bilimleri Dergisi, 25(2), 139-151. doi: 10.21673/anadoluklin.673832
  • Mikami, E., Fuku, N., Takahashi, H., Ohiwa, N., Pitsiladis, Y. P., Higuchi, M., & Tanaka, M. (2012). Polymorphisms in the control region of mitochondrial DNA associated with elite Japanese athlete status. Scandinavian Journal of Medicine & Science in Sport, 23(5), 593-599. doi.org/10.1111/j.1600-0838.2011.01424.x
  • Morrish, F., & Hockenbery, D. (2014). MYC and mitochondrial biogenesis. Cold Spring Harbor Perspectives in Medicine, 4(5), 1-16. doi: 10.1101/cshperspect.a014225
  • Murakami, H., Soma, R., Hayashi, J., Katsuta, S., Matsuda, M., Ajisaka, R., & Kuno, S. (2001). Relationship between mitochondrial DNA polymorphism and the individual differences in aerobic performance. The Japanese Journal of Physiology, 51(5), 563-568. doi: 10.2170/jjphysiol.51.563
  • Niemi , A.-K., & Majamaa, K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics, 13(8), 965-969. doi: 10.1038/sj.ejhg.5201438
  • Nogales-Gadea, G., Pinós, T., Ruiz, J. R., Marzo, P. F., Fiuza-Luces, C., López-Gallardo, E., & Arenas, J. (2011). Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion, 11(6), 905-908. doi: 10.1016/j.mito.2011.08.002
  • Ohlsson, L., Hall, A., Lindahl , H., Danielsson, R., Gustafsson, A., Lavant, E., & Ljunggren, L. (2020). Increased level of circulating cell-free mitochondrial DNA due to a single bout of strenuous physical exercise. European Journal of Applied Physiology, 120(4), 897-905. doi: 10.1007/s00421-020-04330-8
  • Pérez-Treviño, P., Velásquez, M., & García, N. (2020). Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Disease, 1866(6), 2-13. doi: 10.1016/j.bbadis.2020.165761
  • Picca, A., Calvani, R., Coelho-Junior, H. J., & Marzetti , E. (2021). Cell death and inflammation: The role of mitochondria in health and disease. Cells, 10(3), 2-17. doi: 10.3390/cells10030537
  • Purhonen, J., Klefström, J., & Kallijärvi, J. (2023). MYC-an emerging player in mitochondrial diseases. Frontiers in Cell and Developmental Biology, 11, 1-12. doi.org/10.3389/fcell.2023.1257651
  • Rankinen, T., Pérusse, L., Rauramaa, R., Rivera, M. A., Wolfarth, B., & Bouchard, C. (2001). The human gene map for performance and health-related fitness phenotypes. Medicine and Science Sports Exercise, 33(6), 855-867. doi: 10.1097/00005768-200106000-00001
  • Safdar, A., Bourgeois, J. M., Ogborn, D. I., Little, J. P., Hettinga, B. P., Akhtar, M., & Kujoth, G. C. (2011). Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proceedings of the National Academy of Sciences, 108(10), 4135-4140. doi: 10.1073/pnas.1019581108
  • Scott, R. A., Fuku, N., Onywera, V. O., Boit, M., Wilson, R. H., Tanaka, M., & Pitsiladis, Y. P. (2009). Mitochondrial haplogroups associated with elite Kenyan athlete status. Medicine & Science in Sports & Exercise, 41(1), 123-128. doi: 10.1249/MSS.0b013e31818313a2
  • Semenova, E. A., Hall, E. C., & Ahmetov, I. I. (2023). Genes and athletic performance: The 2023 update. Genes (Basel), 14(6), 2-32. doi: 10.3390/genes14061235
  • Şahin, E., ve Alver, A. (2022). Mitohormesis ve düzenlenme mekanizmaları. Farabi Tıp Dergisi, 1(1), 21-26.
  • Taivassalo, T., & Haller, R. G. (2004). Implications of exercise training in mtDNA defects use it or lose it? Biochimica et Biophysica Acta, 1659(2-3), 221-231. doi: 10.1016/j.bbabio.2004.09.007
  • Taivassalo, T., Gardner, J. L., Taylor, R. W., Schaefer, A. M., Newman, J., Barron, M. J., & Turnbull, D. M. (2006). Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 129(12) , 3391–3401. doi: 10.1093/brain/awl282
  • Thurairajah , K., Briggs, G. D., & Balogh, Z. J. (2018). The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. European Journal of Trauma and Emergency Surgery, 44(3), 325-334. doi: 10.1007/s00068-018-0954-3
  • Trumpff, C., Michelson, J., Lagranha, C. J., Taleon, V., Karan, K. R., Sturm, G., & Picard , M. (2021). Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion, 59, 225-245. doi: 10.1016/j.mito.2021.04.002
  • Varillas-Delgado, D., Coso, J. D., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Muñoz, A., Maestro, A., & Morencos, E. (2022). Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. European Journal Applied Physiology, 122(8), 1811-1830. doi: 10.1007/s00421-022-04945-z
  • Wan, W., Zhang, L., Lin, Y., Rao, X., Wang, X., Hua, F., & Ying, J. (2023). Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. Journal of Translational Medicine, 21(1), 2-13. doi: 10.1186/s12967-023-03885-2
  • Yamada, Y., Takano, Y., Satrialdi, Abe, J., Hibino, M., & Harashima, H. (2020). Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules, 10(1), 2-23. doi.org/10.3390/biom10010083
  • Yıldız, S. A. (2012). Aerobik ve anaerobik kapasitenin anlamı nedir? Solunum Dergisi, 14(1), 1-8.
  • Zanini, G., Gaetano, A. D., Selleri, V., Savino, G., Cossarizza, A., Pinti, M., & Nasi, M. (2021). Mitochondrial DNA and exercise: Implications for health and injuries in sports. Cells, 10(10, 2-17. doi: 10.3390/cells10102575
There are 64 citations in total.

Details

Primary Language English
Subjects Exercise Physiology
Journal Section Reviews
Authors

Sedat Kahya 0000-0002-1169-2642

Early Pub Date August 19, 2024
Publication Date August 19, 2024
Submission Date July 2, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Kahya, S. (2024). The Investigation of Relationship Between Sporting Performance and Mitochondria and Genes. Yalova Üniversitesi Spor Bilimleri Dergisi, 3(2), 66-80. https://doi.org/10.70007/yalovaspor.1509439