Review Article
BibTex RIS Cite

The Impact of Polymorphisms in AMPD1 and BMP2 Genes on Performance in Female Athletes

Year 2024, Volume: 3 Issue: 3, 47 - 56, 08.11.2024
https://doi.org/10.70007/yalovaspor.1571713

Abstract

Introduction and Aim: Athletic performance refers to the effort exerted by an athlete to achieve a specific performance goal within a certain period of time. In addition to training, nutrition, psychology, and genetics play significant roles in determining and enhancing athletic performance. Numerous studies have investigated how certain genetic variants can influence athletes' physical abilities such as strength, aerobic or anaerobic endurance, and speed. Among these genes are Bone Morphogenetic Protein 2 (BMP2) and Adenosine Monophosphate Deaminase 1 (AMPD1). Although the BMP2 gene is not the direct focus of many studies on sports performance, it is considered a gene with indirect effects in the field of sports genetics. The rs17602729 polymorphism in the AMPD1 gene, on the other hand, is suggested to influence performance in short-duration, high-intensity activities (e.g., sprinting and power sports). Investigating these polymorphisms will significantly contribute to the field. Considering these variables, athletes' genetic profiles can be identified, and training programs can be personalized.
Method: The study included 13 amateur female athletes, aged between 12-16, who were either short- or long-distance runners, and 13 sedentary girls of the same age group. Blood samples were taken from the participants, and DNA isolation was performed, followed by genotyping using Sanger sequencing. The study investigated the BMP2 gene rs15705 (244A>C) and the AMPD1 gene rs17602729 (c133C>T) polymorphisms. The analyses were conducted using SPSS 24.00 software. Differences between groups in allele distributions were analyzed using the Chi-square/Fisher's Exact Test. The minimum confidence interval was set at 95%, with p<0.05.
Results: Upon examining the genotype distribution of the BMP2 gene A/C polymorphism, it was observed that 46.15% of athletes had the AA genotype, 46.15% had the AC genotype, and 7.69% had the CC genotype. Among the athletes, the allele distribution showed that 69.23% carried the A allele, while 30.76% carried the C allele. The genotype distribution in the control group was found to be 53.84% AA, 46.15% AC, and 0% CC. The allele distributions were 76.92% for the A allele and 23.07% for the C allele. When examining the genotype distribution of the AMPD1 gene C/T polymorphism, it was found that 92.30% of athletes had the CC genotype, 7.69% had the CT genotype, and 0% had the TT genotype. Among athletes, 96.15% carried the C allele, while 3.84% carried the T allele. The genotype distribution in the control group was similarly found to be 92.30% CC, 7.69% CT, and 0% TT. The allele distributions were 96.15% for the C allele and 3.84% for the T allele.
Conclusion: In this study, it was observed that the AA and AC genotypes were more represented among athletes in the BMP2 gene A/C polymorphism. Considering that the athletes are middle- and long-distance runners, it is thought that these genotypes may contribute positively to aerobic performance. When examining the effect of the AMPD1 C/T polymorphism on athletic performance, it is noted that in individuals carrying the T allele, the reduction in enzyme activity may slow down energy metabolism. In this study, the frequency of the T allele was found to be quite low (3.84%). The higher representation of the C allele suggests that the athlete group might be more successful in terms of physical performance. However, the effects of the polymorphism on athletic performance are also influenced by environmental factors such as personal differences, training level, and nutrition, meaning that the impact may not be the same for every individual. Therefore, while the athlete group with identified genotypes may seem fortunate in terms of physical performance potential, this alone is not sufficient. Appropriate nutrition and training programs should be implemented to improve and develop their potential.

Ethical Statement

Ethics review board: Gümüşhane Unıversıty Scıentıfıc Research And Publıcatıon Ethıcs Board Date of the ethics review document: 27/03/2024 Number of the ethics assessment document: E-95674917-108.99-245411

References

  • Appel, M., Zentgraf, K., Krüger, K., & Alack, K. (2021). Effects of genetic variation on endurance performance, muscle strength, and injury susceptibility in sports: A systematic review. Frontiers in Physiology, 12, 694411. https://doi.org/10.3389/fphys.2021.694411
  • Bulgay, C., Çakır, V. O., Kazan, H. H., Ergün, M. A., Badicu, G., & Ardigò, L. P. (2024). The AMPD1 Gene’s rs17602729 Polymorphism and Athletic Performance in Track and Field Athletes. Applied Sciences, 14(2), 891. https://doi.org/10.3390/app14020891
  • Del Coso, J., & Lucia, A. (2021). Genetic Influence in Exercise Performance. Genes, 12(5), 651. https://doi.org/10.3390/genes12050651
  • Fang, X., Xu, H., Zhang, C., Zhang, J., Lan, X., Gu, C., & Hong, C. (2010). Polymorphisms in BMP-2 gene and their associations with growth traits in goats. Genes & Genomics, 32, 29-35. https://doi.org/10.1007/s13258-010-0762-6
  • Fritz, D. T., Jiang, S., Xu, J., & Rogers, M. B. (2006). A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA: protein interactions. Molecular Endocrinology, 20(7), 1574-1586. https://doi.org/10.1210/me.2005-0469
  • Ginevičienė, V., Jakaitienė, A., Pranculis, A., Milašius, K., Tubelis, L., & Utkus, A. (2014). AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics, 15, 1-9. https://doi.org/10.1186/1471-2156-15-58
  • Jaime, D., Fish, L. A., Madigan, L. A., Xi, C., Piccoli, G., Ewing, M. D., ... & Fallon, J. R. (2024). The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt-mTOR signaling. Skeletal Muscle, 14(1), 1. https://doi.org/10.1186/s13395-023-00329-9
  • Li, T. T., Lai, Y. W., Han, X., Niu, X., & Zhang, P. X. (2022). BMP2 as a promising anticancer approach: functions and molecular mechanisms. Investigational New Drugs, 40(6), 1322-1332. https://doi.org/10.1007/s10637-022-01298-4
  • Miyamoto-Mikami, E., Murakami, H., Tsuchie, H., Takahashi, H., Ohiwa, N., Miyachi, M., ... & Fuku, N. (2017). Lack of association between genotype score and sprint/power performance in the Japanese population. Journal of Science and Medicine in Sport, 20(1), 98-103. https://doi.org/10.1016/j.jsams.2016.06.005
  • Norman, B., Ahnesorg, P., Svensson, A., et al. (2010). AMP deaminase 1 deficiency is associated with lower sprint performance in elite athletes. Medicine and Science in Sports and Exercise, 42(8), 1573-1580.
  • Poon, B., Kha, T., Tran, S., & Dass, C. R. (2016). Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. Journal of Pharmacy and Pharmacology, 68(2), 139-147. https://doi.org/10.1111/jphp.12506
  • Psatha, A., Al-Mahayri, Z. N., Mitropoulou, C., & Patrinos, G. P. (2024). Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Human Genomics, 18(1), 47. https://doi.org/10.1186/s40246-024-00621-9
  • Rubio, J. C., Martín, M. A., Rabadán, M., et al. (2005). Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair athletic performance? Journal of Sports Science & Medicine, 4(1), 23-28. https://doi.org/10.1152/japplphysiol.01371.2004
  • Ruschke, K., Hiepen, C., Becker, J., & Knaus, P. (2012). BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell and Tissue Research, 347, 521-544. https://doi.org/10.1007/s00441-011-1283-6
  • Semenova, E. A., Hall, E. C., & Ahmetov, I. I. (2023). Genes and athletic performance: the 2023 update. Genes, 14(6), 1235. https://doi.org/10.3390/genes14061235
  • URL1;https://www.longdom.org/peer-reviewed-journals/athletic-performance-46249.html#:~:text=Athletic%20performance%20describes%20the%20efforts,performance%20by%20their%20own%20standards. Erişim Tarihi: 08.07.2024
  • Varillas-Delgado, D., Gutierrez-Hellín, J., & Maestro, A. (2023). Genetic profile in genes associated with sports injuries in elite endurance athletes. International Journal of Sports Medicine, 44(01), 64-71. https://doi.org/10.1055/a-1917-9212
  • Zöllig, C., Lutz, W., Schlumpf, M., et al. (2006). AMPD1 gene polymorphism affects the recovery process in endurance athletes. European Journal of Applied Physiology, 98(4), 348-354.

Kız Atletlerde AMPD1 ve BMP2 Genlerindeki Polimorfizmlerin Performansa Etkisi

Year 2024, Volume: 3 Issue: 3, 47 - 56, 08.11.2024
https://doi.org/10.70007/yalovaspor.1571713

Abstract

Giriş ve Amaç: Atletik performans, bir sporcunun belirli bir zaman dilimi içinde belirli performans hedefine ulaşmak için gösterdiği çabayı ifade etmektedir. Antrenmanın yanı sıra beslenme, psikoloji ve genetik, atletik performansı belirlemede ve geliştirmede önemli rol oynar. Çok sayıda çalışma, belirli genetik varyantların sporcuların güç, aerobik veya anaerobik dayanıklılık ve hız gibi fiziksel yeteneklerini nasıl etkileyebileceğini araştırmıştır. Bu genler arasında Kemik Morfogenetik Protein 2 (BMP2) ve Adenozin Monofosfat Deaminaz 1 (AMPD1) bulunmaktadır. BMP2 geni, spor performansı üzerine yapılan birçok çalışmanın doğrudan odağı olmasa da, spor genetiği alanında dolaylı etkileri olan bir gen olarak kabul edilir. AMPD1 genindeki rs17602729 polimorfizmi ise, kısa süreli, yüksek yoğunluklu aktivitelerdeki (örneğin, sprint ve güç sporları) performansı etkilediği öne sürülen bir varyanttır. Bu polimorfizmleri incelemek alana önemli ölçüde katkıda bulunacaktır. Bu değişkenler dikkate alınarak sporcuların genetik profilleri belirlenebilir ve eğitim programları kişiselleştirilebilir.
Yöntem: Araştırmaya 12-16 yaş aralığında kısa veya uzun mesafe koşucusu olan 13 amatör kadın sporcu ve aynı yaş aralığındaki 13 hareketsiz kız çocuğu katılmıştır. Katılımcılardan kan örnekleri alınmış olup DNA izolasyonu yapılmış ardından Sanger sekanslama kullanılarak genotipler belirlenmiştir. Çalışmada BMP2 geni rs15705 (244A>C) ve AMPD1 geni rs17602729 (c133C>T) polimorfizmleri incelenmiştir. Analizler SPSS 24.00 programı kullanılarak yapılmıştır. Alel dağılımlarındaki gruplar arasındaki farklılık Chi square/Fisher’s Exact Testi ile analiz edilmiştir. Minimum güven aralığı %95, (p<0,05) olarak belirlenmiştir.
Bulgular: BMP2 geni A/C polimorfizminin genotip dağılımı incelendiğinde, sporcuların %46.15'inin AA genotipine, %46.15'inin AC genotipine ve %7.69'unun CC genotipine sahip olduğu gözlemlenmiştir. Sporcuların allel dağılımında, %69.23'ünün A allelini, %30.76'sının ise C allelini taşıdığı belirlenmiştir. Kontrol grubundaki genotip dağılımı ise %53.84 AA, %46.15 AC ve %0 CC olarak bulunmuştur. Allel dağılımları ise A alleli için %76.92 ve C alleli için %23.07 olarak belirlenmiştir. AMPD1 geni C/T polimorfizminin genotip dağılımına bakıldığında, sporcuların %92.30'unun CC genotipine, %7.69'unun CT genotipine ve %0'ının TT genotipine sahip olduğu görülmektedir. Sporcuların allel dağılımında, %96.15'inin C allelini, %3.84'ünün ise T allelini taşıdığı belirlenmiştir. Kontrol grubundaki genotip dağılımı da benzer şekilde %92.30 CC, %7.69 CT ve %0 TT olarak bulunmuştur. Allel dağılımları ise C alleli için %96.15 ve T alleli için %3.84 olarak belirlenmiştir.
Sonuç: Yapılan bu araştırmada, BMP2 geni A/C polimorfizminde, sporcular arasında AA ve AC genotiplerinin daha yüksek oranda temsil edildiği görülmektedir. Sporcuların orta ve uzun mesafe koşucusu olduğu göz önüne alındığında, bu genotiplerin aerobik performansa olumlu katkı sağlayabileceği düşünülebilir. AMPD1 C/T polimorfizminin sportif performans üzerindeki etkisi incelendiğinde özellikle T aleli taşıyan bireylerde enzim aktivitesinin azalması nedeniyle enerji metabolizması yavaşlayabilir. Yapılan bu araştırmada, T allel dağılımının oranı oldukça düşüktür (%3.84). C allelinin daha fazla temsili, sporcu grubunun fiziksel performans açısından daha başarılı olabileceğini düşündürmektedir. Ancak, polimorfizmin sportif performans üzerindeki etkileri kişisel farklılıklar, antrenman düzeyi, beslenme gibi çevresel faktörlerle de etkileşim halinde olduğundan, her birey için aynı düzeyde olmayabilir. Bu nedenle genotipleri belirlenen sporcu grubu fiziksel performans potansiyeli açısından şanslı görünse de, bu tek başına yeterli değildir. Sporcuların bu potansiyellerini iyileştirmek ve geliştirmek için uygun beslenme ve antrenman programları uygulanmalıdır.

References

  • Appel, M., Zentgraf, K., Krüger, K., & Alack, K. (2021). Effects of genetic variation on endurance performance, muscle strength, and injury susceptibility in sports: A systematic review. Frontiers in Physiology, 12, 694411. https://doi.org/10.3389/fphys.2021.694411
  • Bulgay, C., Çakır, V. O., Kazan, H. H., Ergün, M. A., Badicu, G., & Ardigò, L. P. (2024). The AMPD1 Gene’s rs17602729 Polymorphism and Athletic Performance in Track and Field Athletes. Applied Sciences, 14(2), 891. https://doi.org/10.3390/app14020891
  • Del Coso, J., & Lucia, A. (2021). Genetic Influence in Exercise Performance. Genes, 12(5), 651. https://doi.org/10.3390/genes12050651
  • Fang, X., Xu, H., Zhang, C., Zhang, J., Lan, X., Gu, C., & Hong, C. (2010). Polymorphisms in BMP-2 gene and their associations with growth traits in goats. Genes & Genomics, 32, 29-35. https://doi.org/10.1007/s13258-010-0762-6
  • Fritz, D. T., Jiang, S., Xu, J., & Rogers, M. B. (2006). A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA: protein interactions. Molecular Endocrinology, 20(7), 1574-1586. https://doi.org/10.1210/me.2005-0469
  • Ginevičienė, V., Jakaitienė, A., Pranculis, A., Milašius, K., Tubelis, L., & Utkus, A. (2014). AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics, 15, 1-9. https://doi.org/10.1186/1471-2156-15-58
  • Jaime, D., Fish, L. A., Madigan, L. A., Xi, C., Piccoli, G., Ewing, M. D., ... & Fallon, J. R. (2024). The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt-mTOR signaling. Skeletal Muscle, 14(1), 1. https://doi.org/10.1186/s13395-023-00329-9
  • Li, T. T., Lai, Y. W., Han, X., Niu, X., & Zhang, P. X. (2022). BMP2 as a promising anticancer approach: functions and molecular mechanisms. Investigational New Drugs, 40(6), 1322-1332. https://doi.org/10.1007/s10637-022-01298-4
  • Miyamoto-Mikami, E., Murakami, H., Tsuchie, H., Takahashi, H., Ohiwa, N., Miyachi, M., ... & Fuku, N. (2017). Lack of association between genotype score and sprint/power performance in the Japanese population. Journal of Science and Medicine in Sport, 20(1), 98-103. https://doi.org/10.1016/j.jsams.2016.06.005
  • Norman, B., Ahnesorg, P., Svensson, A., et al. (2010). AMP deaminase 1 deficiency is associated with lower sprint performance in elite athletes. Medicine and Science in Sports and Exercise, 42(8), 1573-1580.
  • Poon, B., Kha, T., Tran, S., & Dass, C. R. (2016). Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. Journal of Pharmacy and Pharmacology, 68(2), 139-147. https://doi.org/10.1111/jphp.12506
  • Psatha, A., Al-Mahayri, Z. N., Mitropoulou, C., & Patrinos, G. P. (2024). Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Human Genomics, 18(1), 47. https://doi.org/10.1186/s40246-024-00621-9
  • Rubio, J. C., Martín, M. A., Rabadán, M., et al. (2005). Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair athletic performance? Journal of Sports Science & Medicine, 4(1), 23-28. https://doi.org/10.1152/japplphysiol.01371.2004
  • Ruschke, K., Hiepen, C., Becker, J., & Knaus, P. (2012). BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell and Tissue Research, 347, 521-544. https://doi.org/10.1007/s00441-011-1283-6
  • Semenova, E. A., Hall, E. C., & Ahmetov, I. I. (2023). Genes and athletic performance: the 2023 update. Genes, 14(6), 1235. https://doi.org/10.3390/genes14061235
  • URL1;https://www.longdom.org/peer-reviewed-journals/athletic-performance-46249.html#:~:text=Athletic%20performance%20describes%20the%20efforts,performance%20by%20their%20own%20standards. Erişim Tarihi: 08.07.2024
  • Varillas-Delgado, D., Gutierrez-Hellín, J., & Maestro, A. (2023). Genetic profile in genes associated with sports injuries in elite endurance athletes. International Journal of Sports Medicine, 44(01), 64-71. https://doi.org/10.1055/a-1917-9212
  • Zöllig, C., Lutz, W., Schlumpf, M., et al. (2006). AMPD1 gene polymorphism affects the recovery process in endurance athletes. European Journal of Applied Physiology, 98(4), 348-354.
There are 18 citations in total.

Details

Primary Language English
Subjects Physical Activity and Health, Sports Science and Exercise (Other)
Journal Section Research Articles
Authors

Merve Bektaş 0000-0003-4239-7790

Early Pub Date December 2, 2024
Publication Date November 8, 2024
Submission Date October 22, 2024
Acceptance Date November 2, 2024
Published in Issue Year 2024 Volume: 3 Issue: 3

Cite

APA Bektaş, M. (2024). The Impact of Polymorphisms in AMPD1 and BMP2 Genes on Performance in Female Athletes. Yalova Üniversitesi Spor Bilimleri Dergisi, 3(3), 47-56. https://doi.org/10.70007/yalovaspor.1571713