Research Article
BibTex RIS Cite

Relationship Between Vertical Stiffness and Reactive Strength Index and Agility in Elite Male Athletes

Year 2025, Volume: 4 Issue: 2, 61 - 73, 23.10.2025
https://doi.org/10.70007/yalovaspor.1654144

Abstract

The aim of the study is to examine the relationship between vertical stiffness and reactive force index and agility in elite athletes. Ten male elite athletes (jumping, sprinting, throwing) voluntarily participated in the study (Xage=23.87±2.23 years; Xheight=1.85±0.10 m; Xbody weight=80.76±16.41 kg). The athletes underwent physical measurements, three different depth jump measurements (double, dominant, and non-dominant leg) at two different box heights (27 cm and 42 cm), and the Pro-Agility agility test. Markers were placed on a total of 58 anatomical points on the right and left sides of the athletes. The depth jump movement was recorded at 500 frames per second using seven Oqus 7+ cameras from the Qualisys Track Manager 2020.3 (QTM) system. The force platform synchronised with QTM was placed at the front of the jump box. Agility performance time was measured using the Fusion Sports Smartspeed™ PRO photocell. Individual models of the body segments for all jumps were created in Visual 3D. The pelvis was defined using the Coda model. Vertical stiffness (kdikey) was calculated by dividing the maximum vertical ground reaction force (YRKv) during the loading phase by the vertical displacement of the centre of mass (∆KMv). The reactive force index of the athletes was calculated using the formula jump height (m)/ground contact time (s). The relationship between vertical stiffness and reactive force index and agility was analysed using Pearson correlation in JASP 0.19.3. In the double-leg depth jump movement at both box heights, vertical stiffness (28.62±17.16 kN/m and 26.33±12.86 kN/m), jump height (0.33±0.07 m and 0.32±0.09 m), and reactive force index (1.35±0.53 m/s and 1.20±0.48 m/s) were found to be higher than those in the single-leg depth jump movement. The average agility times of the athletes were found to be 5.53±0.26 s. A statistically significant negative correlation was found between the athletes' agility performance and the reactive force index of the double-leg depth jump (r = -0.671; p = 0.034). In conclusion, if the reactive force index in the double-leg depth jump movement is high, the agility performance time is shorter.

References

  • Aktaş Sevindik, B. (2023). Kayak branşı sporcularında bacak sertliği ve reaktif kuvvet indeksi farklılıklarının incelenmesi. Spor ve Performans Araştırmaları Dergisi, 14(3), 391-400. https://doi.org/10.17155/omuspd.1365016
  • Arampatzis, A., Schade, F., Walsh, M., & Brüggemann, G. P. (2001). Influence of leg stiffness and its effect on myodynamic jumping performance. Journal of Electromyography and Kinesiology, 11(5), 355–364. https://doi.org/10.1016/S1050-6411(01)00009-8
  • Bell, A. L., Brand, R. A., & Pedersen, D. R. (1989). Prediction of hip joint centre location from external landmarks. Human Movement Science, 8(1), 3-16. https://doi.org/10.1016/0167-9457(89)90020-1
  • Crenna, F., Rossi, G. B., & Berardengo, M. (2021). Filtering biomechanical signals in movement analysis. Sensors, 21(13), 4580. https://doi.org/10.3390/s21134580
  • Deprez, D., Valente-Dos-Santos, J., Coelho, E. S. M. J., Lenoir, M., Philippaerts, R., & Vaeyens, R. (2015). Multilevel development models of explosive leg power in high-level soccer players. Medicine & Science in Sports & Exercise, 47(7), 1408-15. https://doi.org/10.1249/MSS.0000000000000541
  • Edouard, P., Dandrieux, P. E., Iatropoulos, S., Blanco, D., Branco, P., & Guex, K. (2024). Injuries in athletics (track and field): A narrative review presenting the current problem of injuries. Zeitschrift für Sportmedizin/German Journal of Sports Medicine, 75(4), 132-141. https://doi.org/10.5960/dzsm.2024.601
  • Flanagan, E. P., & Comyns, T. M. (2008). The use of contact time and the reactive strength index to optimize fast stretch- shortening cycle training. Strength & Conditioning Journal, 30(5), 32-38. https://doi.org/10.1519/SSC.0b013e318187e25b
  • Fox, M. C., Hsiao-Wecksler, E. T., & Polk, J. D. (2022). Effects of body mass on leg and vertical stiffness in running humans. BioRxiv, 2022. https://doi.org/10.1101/2022.05.04.490639.
  • Gisladottir, T., Petrović, M., Sinković, F., & Novak, D. (2024). The relationship between agility, linear sprinting, and vertical jumping performance in U-14 and professional senior team sports players. Frontiers in Sports and Active Living, 6(April). https://doi.org/10.3389/fspor.2024.1385721
  • Hayes, P. R., & Caplan, N. (2014). Leg stiffness decreases during a run to exhaustion at the speed at O2max. European Journal of Sport Science, 14(6), 556-562. https://doi:10.1080/17461391.2013.876102
  • Hazır, T., Mahir, Ö. F., & Açıkada, C. (2010). Genç futbolcularda çeviklik ile vücut kompozisyonu ve anaerobik güç arasındaki ilişki. Spor Bilimleri Dergisi, 21(4), 146-153. İnce, İ. (2020). 14-17 yaş grubu voleybolcularda reaktif kuvvet indeksi ve bacak sertliğinin bazı performans testleri ile ilişkisinin incelenmesi. Germenica Beden Eğitimi ve Spor Bilimleri Dergisi, 1(1), 37-45.
  • Kahraman, M. Z., & Özkan, Z. (2023). The relationship between reactive strength index and agility in young male volleyball and basketball players. Yalova Üniversitesi Spor Bilimleri Dergisi, 2(1), 100-112.
  • Kalkhoven, J. T., & Watsford, M. L. (2018). The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. Journal of Sports Sciences, 36(9), 1022–1029. https://doi.org/10.1080/02640414.2017.1349921
  • Karakaş, Ç. S. (2020). Farklı yaş gruplardaki futbolcu çocuklarda bacak sertliği ve koşu ekonomisinin incelenmesi. Yayımlanmamış Yüksek Lisans tezi, Çukurova Üniversitesi, Sağlık Bilimleri Enstitüsü, Beden Eğitimi ve Spor Ana Bilim Dalı, Adana.
  • Kayhan, R. F., Çıkıkcı, A., & Gülez, O. (2021). The effect of reactive strength index on some parameters of young football players. Uluslararası Spor Egzersiz ve Antrenman Bilimi Dergisi, 7(1), 31–39. https://doi.org/10.18826/USEEABD.835723
  • Ma, Y. (2021). Kinematics study of depth jump on male triple jumpers with slope run‐up. Mathematical Problems in Engineering, 2021(1), 4867451. https://doi.org/10.1155/2021/4867451
  • Mackala, K., Vodičar, J., Žvan, M., Križaj, J., Stodolka, J., Rauter, S., Šimenko, J., & Čoh, M. (2020). Evaluation of the pre-planned and non-planed agility performance: comparison between individual and team sports. International Journal of Environmental Research and Public Health, 17(3), 1–13. https://doi.org/10.3390/ijerph17030975
  • Maloney, S. J., & Fletcher, I. M. (2018). Lower limb stiffness testing in athletic performance: a critical review. Sports Biomechanics, 1-22. https://doi:10.1080/14763141.2018.1460395
  • Matlák, J., Tihanyi, J., & Rácz, L. (2016). Relationship between reactive agility and change of direction speed in amateur soccer players. Journal of Strength and Conditioning Research, 30(6), 1547–1552. https://doi.org/10.1519/JSC.0000000000001262
  • Mercer, M. (2021). Improving the specificity of vertical stiffness measurement in depth jump landings. Master of Science, Utah State Unıversity, Health and Human Movement, Logan, Utah.
  • Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28(08), 655-661. https://doi:10.1055/s-2007-964896
  • Özbay, S., Ulupınar, S., & Özkara, A. B. (2018). Sporda çeviklik performansı. Ulusal Spor Bilimleri Dergisi, 2(2), 97–112. https://doi.org/10.30769/usbd.463364 Özer, K. (2020). Fiziksel uygunluk (7. Baskı). Nobel Akademik Yayıncılık. Sassi, R. H., Dardouri, W., Yahmed, M. H., Gmada, N., Mahfoudhi, M. E., & Gharbi, Z. (2009). Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. The Journal of Strength & Conditioning Research, 23(6), 1644-1651. https://doi.org/10.1519/JSC.0b013e3181b425d2
  • Sert, V. (2019). Genç tenis oyuncularında bacak gücü ve katılığı: Sürat ve çeviklik performansı ile ilişkisi. Yayımlanmamış Yüksek Lisans tezi, Sakarya Üniversitesi, Sağlık Bilimleri Enstitüsü, Antrenörlük Eğitimi Ana Bilim Dalı, Sakarya.
  • Sharma, H. O., & Subramanian, R. (2014). Speed and agility as determinants of long jump performance. Academic Sports Scholar, 3(9), 49-52.
  • Southey, B., Willshire, M., Connick, M. J., Austin, D., Spits, D., & Beckman, E. (2024). Reactive strength index as a key performance indicator in different athlete populations–a systematic review. Science & Sports, 39(2), 129-143. https://doi.org/10.1016/j.scispo.2023.01.004
  • Sporri, D., Ditroilo, M., Pickering Rodriguez, E. C., Johnston, R. J., Sheehan, W. B., & Watsford, M. L. (2018). The effect of water-based plyometric training on vertical stiffness and athletic performance. PLoS ONE, 13(12), 1–11. https://doi.org/10.1371/journal.pone.0208439
  • Struzik, A., Karamanidis, K., Lorimer, A., Keogh, J. W., & Gajewski, J. (2021). Application of leg, vertical, and joint stiffness in running performance: A literature overview. Applied Bionics and Biomechanics, 2021(1), 9914278. https://doi.org/10.1155/2021/9914278
  • Turgut, A. (2019). Kadın futbolcularda baskın bacağın yön değiştirme performansına etkisi. Yayımlanmamış Yüksek Lisans tezi, Sakarya Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Antrenörlük Eğitimi Ana Bilim Dalı, Sakarya.
  • Wang, I. L., Chen, Y. M., Zhang, K. K., Li, Y. G., Su, Y., Wu, C., & Ho, C. S. (2021). Influences of different drop height training on lower extremity kinematics and stiffness during repetitive drop jump. Applied Bionics and Biomechanics, 2021(1), 5551199. https://doi.org/10.1155/2021/5551199

Elit Erkek Atletlerde Dikey Sertlik ve Reaktif Kuvvet İndeksi ile Çeviklik İlişkisi

Year 2025, Volume: 4 Issue: 2, 61 - 73, 23.10.2025
https://doi.org/10.70007/yalovaspor.1654144

Abstract

Araştırmanın amacı elit atletlerde dikey sertlik ve reaktif kuvvet indeksi ile çeviklik ilişkisinin incelenmesidir. Araştırmaya 10 erkek elit atlet (atlama, sprint, atma) gönüllü olarak katılmıştır (Xyaş=23,87±2,23yıl; Xboy=1,85±0,10m; Xvücut ağırlığı=80,76±16,41kg). Sporculara sırasıyla fiziksel ölçümleri, iki farklı kasa yüksekliğinde (27cm-42cm) yapılan üç farklı derinlik sıçrama ölçümleri (çift, baskın ve baskın olmayan bacak) ve pro-agility çeviklik testi uygulatılmıştır. Sporcuların sağ-sol tarafına toplamda 58 anatomik noktasına işaretleyiciler yerleştirilmiştir. Derinlik sıçrama hareketi, Qualisys Track Manager 2020.3 (QTM) sistemine ait yedi tane Oqus 7+ kamera ile 500 kare/sn hızında kayıt altına alınmıştır. QTM ile senkron edilen kuvvet platformu, sıçrama kutusunun ön tarafına yerleştirilmiştir. Çeviklik performans süresi Fusion Sports Smartspeed™ PRO fotosel ile ölçülmüştür. Tüm atlayışların vücut segmentlerinin bireysel modelleri Visual 3D'de oluşturulmuştur. Pelvis Coda modeli kullanılarak tanımlanmıştır. Dikey sertlik (kdikey) yükleme aşaması sırasında en yüksek dikey yer reaksiyon kuvvetinin (YRKv) kütle merkezinin dikey yer değiştirmesine (∆KMv) bölünmesiyle hesaplanmıştır. Sporcuların reaktif kuvvet indeksi sıçrama yüksekliği(m)/yerde kalma süresi(sn) formülüyle hesaplanmıştır. Dikey sertliği ve reaktif kuvvet indeksi ile çeviklik ilişkisi JASP 0.19.3 programında Pearson korelasyonuyla analiz edilmiştir. Her iki kasa yüksekliğinde çift bacak derinlik sıçrama hareketinde dikey sertlik (28,62±17,16kN/m ve 26,33±12,86kN/m), sıçrama yüksekliği (0,33±0,07m ve 0,32±0,09m), reaktif kuvvet indeksi (1,35±0,53m/sn ve 1,20±0,48m/sn) tek bacak derinlik sıçrama hareketine göre daha yüksek tespit edilmiştir. Sporcuların ortalama çeviklik süreleri 5,53±0,26sn bulunmuştur. Sporcuların çeviklik performansı ile çift bacak derinlik sıçrama reaktif kuvvet indeksi arasında istatistiksel olarak negatif yönde anlamlı ilişki tespit edilmiştir (r=-0,671; p=0,034). Sonuç olarak, sporcuların çift bacak derinlik sıçrama hareketindeki reaktif kuvvet indeksi yüksek ise çeviklik performans süresi daha azdır.

References

  • Aktaş Sevindik, B. (2023). Kayak branşı sporcularında bacak sertliği ve reaktif kuvvet indeksi farklılıklarının incelenmesi. Spor ve Performans Araştırmaları Dergisi, 14(3), 391-400. https://doi.org/10.17155/omuspd.1365016
  • Arampatzis, A., Schade, F., Walsh, M., & Brüggemann, G. P. (2001). Influence of leg stiffness and its effect on myodynamic jumping performance. Journal of Electromyography and Kinesiology, 11(5), 355–364. https://doi.org/10.1016/S1050-6411(01)00009-8
  • Bell, A. L., Brand, R. A., & Pedersen, D. R. (1989). Prediction of hip joint centre location from external landmarks. Human Movement Science, 8(1), 3-16. https://doi.org/10.1016/0167-9457(89)90020-1
  • Crenna, F., Rossi, G. B., & Berardengo, M. (2021). Filtering biomechanical signals in movement analysis. Sensors, 21(13), 4580. https://doi.org/10.3390/s21134580
  • Deprez, D., Valente-Dos-Santos, J., Coelho, E. S. M. J., Lenoir, M., Philippaerts, R., & Vaeyens, R. (2015). Multilevel development models of explosive leg power in high-level soccer players. Medicine & Science in Sports & Exercise, 47(7), 1408-15. https://doi.org/10.1249/MSS.0000000000000541
  • Edouard, P., Dandrieux, P. E., Iatropoulos, S., Blanco, D., Branco, P., & Guex, K. (2024). Injuries in athletics (track and field): A narrative review presenting the current problem of injuries. Zeitschrift für Sportmedizin/German Journal of Sports Medicine, 75(4), 132-141. https://doi.org/10.5960/dzsm.2024.601
  • Flanagan, E. P., & Comyns, T. M. (2008). The use of contact time and the reactive strength index to optimize fast stretch- shortening cycle training. Strength & Conditioning Journal, 30(5), 32-38. https://doi.org/10.1519/SSC.0b013e318187e25b
  • Fox, M. C., Hsiao-Wecksler, E. T., & Polk, J. D. (2022). Effects of body mass on leg and vertical stiffness in running humans. BioRxiv, 2022. https://doi.org/10.1101/2022.05.04.490639.
  • Gisladottir, T., Petrović, M., Sinković, F., & Novak, D. (2024). The relationship between agility, linear sprinting, and vertical jumping performance in U-14 and professional senior team sports players. Frontiers in Sports and Active Living, 6(April). https://doi.org/10.3389/fspor.2024.1385721
  • Hayes, P. R., & Caplan, N. (2014). Leg stiffness decreases during a run to exhaustion at the speed at O2max. European Journal of Sport Science, 14(6), 556-562. https://doi:10.1080/17461391.2013.876102
  • Hazır, T., Mahir, Ö. F., & Açıkada, C. (2010). Genç futbolcularda çeviklik ile vücut kompozisyonu ve anaerobik güç arasındaki ilişki. Spor Bilimleri Dergisi, 21(4), 146-153. İnce, İ. (2020). 14-17 yaş grubu voleybolcularda reaktif kuvvet indeksi ve bacak sertliğinin bazı performans testleri ile ilişkisinin incelenmesi. Germenica Beden Eğitimi ve Spor Bilimleri Dergisi, 1(1), 37-45.
  • Kahraman, M. Z., & Özkan, Z. (2023). The relationship between reactive strength index and agility in young male volleyball and basketball players. Yalova Üniversitesi Spor Bilimleri Dergisi, 2(1), 100-112.
  • Kalkhoven, J. T., & Watsford, M. L. (2018). The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. Journal of Sports Sciences, 36(9), 1022–1029. https://doi.org/10.1080/02640414.2017.1349921
  • Karakaş, Ç. S. (2020). Farklı yaş gruplardaki futbolcu çocuklarda bacak sertliği ve koşu ekonomisinin incelenmesi. Yayımlanmamış Yüksek Lisans tezi, Çukurova Üniversitesi, Sağlık Bilimleri Enstitüsü, Beden Eğitimi ve Spor Ana Bilim Dalı, Adana.
  • Kayhan, R. F., Çıkıkcı, A., & Gülez, O. (2021). The effect of reactive strength index on some parameters of young football players. Uluslararası Spor Egzersiz ve Antrenman Bilimi Dergisi, 7(1), 31–39. https://doi.org/10.18826/USEEABD.835723
  • Ma, Y. (2021). Kinematics study of depth jump on male triple jumpers with slope run‐up. Mathematical Problems in Engineering, 2021(1), 4867451. https://doi.org/10.1155/2021/4867451
  • Mackala, K., Vodičar, J., Žvan, M., Križaj, J., Stodolka, J., Rauter, S., Šimenko, J., & Čoh, M. (2020). Evaluation of the pre-planned and non-planed agility performance: comparison between individual and team sports. International Journal of Environmental Research and Public Health, 17(3), 1–13. https://doi.org/10.3390/ijerph17030975
  • Maloney, S. J., & Fletcher, I. M. (2018). Lower limb stiffness testing in athletic performance: a critical review. Sports Biomechanics, 1-22. https://doi:10.1080/14763141.2018.1460395
  • Matlák, J., Tihanyi, J., & Rácz, L. (2016). Relationship between reactive agility and change of direction speed in amateur soccer players. Journal of Strength and Conditioning Research, 30(6), 1547–1552. https://doi.org/10.1519/JSC.0000000000001262
  • Mercer, M. (2021). Improving the specificity of vertical stiffness measurement in depth jump landings. Master of Science, Utah State Unıversity, Health and Human Movement, Logan, Utah.
  • Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28(08), 655-661. https://doi:10.1055/s-2007-964896
  • Özbay, S., Ulupınar, S., & Özkara, A. B. (2018). Sporda çeviklik performansı. Ulusal Spor Bilimleri Dergisi, 2(2), 97–112. https://doi.org/10.30769/usbd.463364 Özer, K. (2020). Fiziksel uygunluk (7. Baskı). Nobel Akademik Yayıncılık. Sassi, R. H., Dardouri, W., Yahmed, M. H., Gmada, N., Mahfoudhi, M. E., & Gharbi, Z. (2009). Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. The Journal of Strength & Conditioning Research, 23(6), 1644-1651. https://doi.org/10.1519/JSC.0b013e3181b425d2
  • Sert, V. (2019). Genç tenis oyuncularında bacak gücü ve katılığı: Sürat ve çeviklik performansı ile ilişkisi. Yayımlanmamış Yüksek Lisans tezi, Sakarya Üniversitesi, Sağlık Bilimleri Enstitüsü, Antrenörlük Eğitimi Ana Bilim Dalı, Sakarya.
  • Sharma, H. O., & Subramanian, R. (2014). Speed and agility as determinants of long jump performance. Academic Sports Scholar, 3(9), 49-52.
  • Southey, B., Willshire, M., Connick, M. J., Austin, D., Spits, D., & Beckman, E. (2024). Reactive strength index as a key performance indicator in different athlete populations–a systematic review. Science & Sports, 39(2), 129-143. https://doi.org/10.1016/j.scispo.2023.01.004
  • Sporri, D., Ditroilo, M., Pickering Rodriguez, E. C., Johnston, R. J., Sheehan, W. B., & Watsford, M. L. (2018). The effect of water-based plyometric training on vertical stiffness and athletic performance. PLoS ONE, 13(12), 1–11. https://doi.org/10.1371/journal.pone.0208439
  • Struzik, A., Karamanidis, K., Lorimer, A., Keogh, J. W., & Gajewski, J. (2021). Application of leg, vertical, and joint stiffness in running performance: A literature overview. Applied Bionics and Biomechanics, 2021(1), 9914278. https://doi.org/10.1155/2021/9914278
  • Turgut, A. (2019). Kadın futbolcularda baskın bacağın yön değiştirme performansına etkisi. Yayımlanmamış Yüksek Lisans tezi, Sakarya Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Antrenörlük Eğitimi Ana Bilim Dalı, Sakarya.
  • Wang, I. L., Chen, Y. M., Zhang, K. K., Li, Y. G., Su, Y., Wu, C., & Ho, C. S. (2021). Influences of different drop height training on lower extremity kinematics and stiffness during repetitive drop jump. Applied Bionics and Biomechanics, 2021(1), 5551199. https://doi.org/10.1155/2021/5551199
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Biomechanics in Sports Science
Journal Section Research Articles
Authors

Esmanur Alkaç 0009-0004-4704-1667

Alper Aşçı 0000-0003-3958-8908

Benil Kıstak Altan 0000-0002-5868-6856

Early Pub Date October 21, 2025
Publication Date October 23, 2025
Submission Date March 9, 2025
Acceptance Date July 2, 2025
Published in Issue Year 2025 Volume: 4 Issue: 2

Cite

APA Alkaç, E., Aşçı, A., & Kıstak Altan, B. (2025). Elit Erkek Atletlerde Dikey Sertlik ve Reaktif Kuvvet İndeksi ile Çeviklik İlişkisi. Yalova Üniversitesi Spor Bilimleri Dergisi, 4(2), 61-73. https://doi.org/10.70007/yalovaspor.1654144

Yalova University Journal of Sports Sciences © 2022 is published by Yalova University and licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.