Stock Price Forecasting and Portfolio Selection Through Machine Learning: An Application on BIST Participation 30 Index
Year 2025,
Volume: 23 Issue: 3, 99 - 121, 15.10.2025
Ümit Hasan Gözkonan
,
Mahmut Karğın
Abstract
This study aims to forecast stock prices of companies listed in the BIST Participation 30 Index using machine learning techniques and construct optimized portfolios based on these forecasts. Two methods, Linear Regression (LR) and Gated Recurrent Unit (GRU), were applied for price forecasting, and the results were used to create equal-weighted and return-weighted portfolios using the Markowitz mean-variance model. The analysis shows that the GRU model significantly outperforms LR in terms of forecast accuracy, leading to more profitable portfolio strategies. The return-weighted portfolio consistently showed higher performance compared to the equal-weighted portfolio and the benchmark index. These findings highlight the effectiveness of machine learning models, particularly deep learning algorithms like GRU, in enhancing investment strategies and portfolio management within the context of portfolio selection. The study provides a framework for future research to explore other indices and machine learning models.
References
-
Altay, E. (2012) “Sermaye Piyasasında Varlık Fiyatlama Teorileri: Sermaye Piyasası Teorisi - Arbitraj Fiyatlama Teorisi”, İstanbul: Derin Yayınları.
-
An, Z., and Feng, Z. (2021) “A Stock Price Forecasting Method Using Autoregressive Integrated Moving Average model and Gated Recurrent Unit Network. 2021 International Conference on Big Data Analysis and Computer Science (BDACS)”, 31–34. Kunming, China: IEEE. https://doi.org/10.1109/BDACS53596.2021.00015.
-
Antad, S., Khandelwal, S., Khandelwal, A., Khandare, R., Khandave, P., Khangar, D., and Khanke, R. (2023) “Stock Price Prediction Website Using Linear Regression-A Machine Learning Algorithm. In ITM Web of Conferences”, 56: 1-10. https://doi.org/10.1051/itmconf/20235605016.
-
Bardakçı, A. (2013) “Portföy Yönetimi”, 1. Baskı, İzmir: İlkem Ofset.
-
Berk, N. (2010) “Finansal Yönetim “, 10. Baskı, İstanbul: Türkmen Kitabevi.
-
Bulut, C., and Hüdaverdi, B. (2022) “Hybrid Approaches in Financial Time Series Forecasting: A Stock Market Application”, Ekoist: Journal of Econometrics and Statistics, 37: 53-68.
https://doi.org/10.26650/ekoist.2022.37.1108411.
-
Capiński, M. J., and Kopp, E. (2014) “Portfolio Theory and Risk Management”, England: Cambridge University Press.
-
Chaweewanchon, A., and Chaysiri, R. (2022) “Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning”, International Journal of Financial Studies, 10(3): 1-19. https://doi.org/10.3390/ijfs10030064.
-
Chen, W., Zhang, H., Mehlawat, M. K., and Jia, L. (2021) “Mean–variance Portfolio Optimization Using Machine Learning-Based Stock Price Prediction”, Applied Soft Computing, 100:1-18. https://doi.org/10.1016/j.asoc.2020.106943.
-
Crisostomo, A. S., Chaguile, C. C., and Gustilo, R. (2023) “Stock Market Prediction using Linear Regression”, 2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1-4. Coron, Palawan, Philippines: IEEE. https://doi.org/10.1109/HNICEM60674.2023.10589227.
-
Çınaroğlu, E., and Avcı, T. (2020) “Prediction of THY Stock Value with Artificial Neural Networks”, Ataturk University Journal of Economics and Administrative Sciences, 34(1): 1-19. https://doi.org/10.16951/atauniiibd.530322.
-
Demirci, E., and Karaatlı, M. (2023) “Forecasting Cryptocurrency Prices with LSTM and GRU Models”, Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 10(1): 134-157. https://doi.org/10.30798/makuiibf.1035314.
-
Drake, P. P., and Fabozzi, F. J. (2010) “The Basics of Finance: An Introduction to Financial Markets, Business Finance, & Portfolio Management, (Vol. 192). New Jersey: John Wiley & Sons.
-
Du, J. (2022) “Mean–variance Portfolio Optimization with Deep Learning Based-Forecasts for Cointegrated Stocks”, Expert Systems with Applications, 201: 1-11. https://doi.org/10.1016/j.eswa.2022.117005.
-
Dutta, A., Kumar, S., and Basu, M. (2020) “A Gated Recurrent Unit Approach to Bitcoin Price Prediction”, Journal of Risk and Financial Management, 13(2): 1-16. https://doi.org/10.3390/jrfm13020023.
-
Ferdiansyah, F., Othman, S. H., Md Radzi, R. Z., Stiawan, D., and Sutikno, T. (2023) “Hybrid Gated Recurrent Unit Bidirectional-Long Short-Term Memory Model to Improve Cryptocurrency Prediction Accuracy”, IAES International Journal of Artificial Intelligence (IJ-AI), 12(1): 251-261. https://doi.org/10.11591/ijai.v12.i1.pp251-261.
-
Fischer, T., and Krauss, C. (2018) “Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions”, European Journal of Operational Research, 270(2): 654-669. https://doi.org/10.1016/j.ejor.2017.11.054.
-
Ghadimpour, M., and Ebrahimi, S. B. (2022) “Forecasting Financial Time Series Using Deep Learning Networks: Evidence from Long-Short Term Memory and Gated Recurrent Unit”, Iranian Journal of Finance, 6(4): 81-94. https://doi.org/10.30699/ijf.2022.313164.1286.
-
Hamzah, H., Chrismawan, P. E. E., Winardi, S., and Tambunan, R. (2023) “Robust Stock Price Prediction using Gated Recurrent Unit (GRU)”, International Journal of Informatics and Computation (IJICOM), 5(1): 29-38. https://doi.org/10.35842/ijicom.v5i1.56.
-
Haryono, A. T., Sarno, R., and Sungkono, K. R. (2023) “Transformer-Gated Recurrent Unit Method for Predicting Stock Price Based on News Sentiments and Technical Indicators”, IEEE Access, 11: 77132-77146. https://doi.org/10.1109/ACCESS.2023.3298445.
-
Huang, C.-F. (2012) “A Hybrid Stock Selection Model Using Genetic Algorithms and Support Vector Regression”, Applied Soft Computing, 12(2): 807-818. https://doi.org/10.1016/j.asoc.2011.10.009.
-
Kaczmarek, T., and Perez, K. (2022) “Building Portfolios Based on Machine Learning Predictions”, Economic Research-Ekonomska Istraživanja, 35(1): 19–37. https://doi.org/10.1080/1331677X.2021.1875865.
-
Karim, Md. E., and Ahmed, S. (2021) “A Deep Learning-Based Approach for Stock Price Prediction Using Bidirectional Gated Recurrent Unit and Bidirectional Long Short-Term Memory Model”, 2021 2nd Global Conference for Advancement in Technology (GCAT), 1-8. https://doi.org/10.1109/GCAT52182.2021.9587895.
-
Kaya, F. (2019) “Finansal Yönetim “, 2. Baskı, İstanbul: Beta Basım Yayım Dağıtım A.Ş.
-
Koç Ustalı, N., Tosun, N., and Tosun, Ö. (2021) “Stock Price Prediction with Machine Learning Techniques”, Eskisehir Osmangazi University Journal of Economics and Administrative Sciences, 16(1): 1-16. https://doi.org/10.17153/oguiibf.636017.
-
Koumou, G. B. (2020) “Diversification and Portfolio Theory: A Review”, Financial Markets and Portfolio Management, 34(3): 267–312. https://doi.org/10.1007/s11408-020-00352-6.
-
Ks, R., and Mk, S. (2021) “Stock Market Prediction Using Deep Learning Techniques”, 2021 International Conference on Communication, Control and Information Sciences (ICCISc), 1-6. https://doi.org/10.1109/ICCISc52257.2021.9484960.
-
Lawi, A., Mesra, H., and Amir, S. (2022) “Implementation of Long Short-Term Memory and Gated Recurrent Units on Grouped Time-Series Data to Predict Stock Prices Accurately”, Journal of Big Data, 9(1): 1-19. https://doi.org/10.1186/s40537-022-00597-0.
-
Li, X., Sigov, A., Ratkin, L., Ivanov, L. A., and Li, L. (2023) “Artificial Intelligence Applications in Finance: A Survey”, Journal of Management Analytics, 10(4): 676–692. https://doi.org/10.1080/23270012.2023.2244503.
-
Lien Minh, D., Sadeghi-Niaraki, A., Huy, H. D., Min, K., and Moon, H. (2018) “Deep Learning Approach for Short-Term Stock Trends Prediction Based on Two-Stream Gated Recurrent Unit Network”, IEEE Access, 6:55392–55404. https://doi.org/10.1109/ACCESS.2018.2868970.
-
Ma, Y., Han, R., and Wang, W. (2021) “Portfolio Optimization with Return Prediction Using Deep Learning and Machine Learning”, Expert Systems with Applications, 165: 1-15. https://doi.org/10.1016/j.eswa.2020.113973.
-
Mabrouk, N., Chihab, M., Hachkar, Z., and Chihab, Y. (2022) “Intraday Trading Strategy Based on Gated Recurrent Unit and Convolutional Neural Network: Forecasting Daily Price Direction”, International Journal of Advanced Computer Science and Applications, 13(3): 585-591. http://dx.doi.org/10.14569/IJACSA.2022.0130369.
-
Pabuçcu, H. (2019) “Forecasting Stock Market Index Movements with Machine Learning Algorithms”, International Journal of Economic and Administrative Studies (23): 179-190.
https://doi.org/10.18092/ulikidince.484138.
-
Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., and Duarte, W. M. (2019) “Decision-making for Financial Trading: A Fusion Approach of Machine Learning and Portfolio Selection”, Expert Systems with Applications, 115: 635-655. https://doi.org/10.1016/j.eswa.2018.08.003.
-
Pawaskar, S. (2022) “Stock Price Prediction Using Machine Learning Algorithms”, International Journal for Research in Applied Science and Engineering Technology (IJRASET), 10:667-673. https://doi.org/10.22214/ijraset.2022.39891.
-
Rahman, M. O., Hossain, S., Junaid, T.-S., Forhad, S. A., and Hossen, M. K. (2019) “Predicting Prices of Stock Market using Gated Recurrent Units (GRUs) Neural Networks”, International Journal of Computer Science and Network Secu, 19(1): 213–222.
-
Rajanikanth, J., Haritha, K., and Shiva Shankar, R. (2023) “Forecasting Stock Close Price Using Machine Learning Models”, ARPN Journal of Engineering and Applied Sciences, 18(4): 412–420.
-
Rather, A. M., Agarwal, A., and Sastry, V. N. (2015) “Recurrent Neural Network and a Hybrid Model for Prediction of Stock Returns”, Expert Systems with Applications, 42(6): 3234-3241. https://doi.org/10.1016/j.eswa.2014.12.003.
-
Remolina, N., and Gurrea-Martinez, A. (Eds.). (2023) “Artificial Intelligence in Finance: Challenges, Opportunities and Regulatory Developments”, Tallinn: Edward Elgar Publishing. https://doi.org/10.4337/9781803926179.
-
Saboor, A., Hussain, A., Lord Y. Agbley, B., Ul Haq, A., Ping Li, J., and Kumar, R. (2023) “Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques”, Intelligent Automation & Soft Computing, 37(2): 1325-1344. https://doi.org/10.32604/iasc.2023.038849.
-
Sadon, A. N., Ismail, S., Jafri, N. S., and Shaharudin, S. M. (2021) “Long Short-Term vs Gated Recurrent Unit Recurrent Neural Network for Google Stock Price Prediction”, 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS), 1-5. https://doi.org/10.1109/AiDAS53897.2021.9574312.
-
Shen, G., Tan, Q., Zhang, H., Zeng, P., and Xu, J. (2018) “Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions”, Procedia Computer Science, 131: 895-903. https://doi.org/10.1016/j.procs.2018.04.298.
-
Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. T., Doreswamy, D., and Bhat, S. K. (2023) “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications”, International Journal of Financial Studies, 11(3): 1-22.
https://doi.org/10.3390/ijfs11030094.
-
Sun, Z., and Zhao, S. (2020) “Machine Learning in Stock Price Forecast”, In E3S Web of Conferences, 214: 1-6. https://doi.org/10.1051/e3sconf/202021402050.
-
Ta, V.-D., Liu, C.-M., and Tadesse, D. A. (2020) “Portfolio Optimization-Based Stock Prediction Using Long-Short Term Memory Network in Quantitative Trading”, Applied Sciences, 10(2): 1-20. https://doi.org/10.3390/app10020437.
-
Tripathy, N., Parida, S., and Nayak, S. K. (2023) “Forecasting Stock Market Indices Using Gated Recurrent Unit (GRU) Based Ensemble Models: LSTM-GRU”, International Journal of Computer and Communication Technology, 9(1):85-90. https://doi.org/10.47893/IJCCT.2023.1443.
-
Toprak, Ş., Çağil, G., and Kökçam, A. H. (2023) “Stock Closing Price Prediction with Machine Learning Algorithms: PETKM Stock Example In BIST”, Duzce University Journal of Science and Technology, 11(2): 958-976. https://doi.org/10.29130/dubited.1096767.
-
Usta, Ö. (2008) “İşletme Finansı ve Finansal Yönetim”, 3. Baskı, Ankara: Detay Yayıncılık.
-
Wang, W., Li, W., Zhang, N., and Liu, K. (2020) “Portfolio Formation with Preselection Using Deep Learning from Long-Term Financial Data”, Expert Systems with Applications, 143: 1-17. https://doi.org/10.1016/j.eswa.2019.113042.
-
Wenjie, L., Jiazheng, L., Jingyang, W., and Shaowen, W. (2022) “A Novel Model for Stock Closing Price Prediction Using CNN-Attention-GRU-Attention”, Economic Computation and Economic Cybernetics Studies and Research, 56(3): 251-264. https://doi.org/10.24818/18423264/56.3.22.16.
-
Yan, J.-A. (2018) “Introduction to Stochastic Finance”, (1st ed. 2018). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-13-1657-9.
-
Zhao, J., Zeng, D., Liang, S., Kang, H. and Liu, Q. (2020) “Prediction Model for Stock Price Trend Based on Recurrent Neural Network”, Journal of Ambient Intelligence and Humanized Computing, 12(1): 745–753. https://doi:10.1007/s12652-020-02057-0.
Makine Öğrenmesi ile Hisse Senedi Fiyat Tahmini ve Portföy Seçimi: BIST Katılım 30 Endeksi Üzerine Bir Uygulama
Year 2025,
Volume: 23 Issue: 3, 99 - 121, 15.10.2025
Ümit Hasan Gözkonan
,
Mahmut Karğın
Abstract
Bu çalışmanın amacı, BIST İslami 30 Endeksi'nde listelenen şirketlerin hisse senedi fiyatlarını makine öğrenmesi tekniklerini kullanarak tahmin etmek ve bu tahminlere dayalı olarak optimize edilmiş portföyler oluşturmaktır. Fiyat tahmini için Doğrusal Regresyon (LR) ve Geçitli Tekrarlayan Birim (Gated Recurrent Unit) olmak üzere iki yöntem uygulanmış ve sonuçlar Markowitz ortalama-varyans modeli kullanılarak eşit ağırlıklı ve getiri ağırlıklı portföyler oluşturmak için kullanılmıştır. Analiz, GRU modelinin tahmin doğruluğu açısından LR'den önemli ölçüde daha iyi performans gösterdiğini ve daha karlı portföy stratejilerine yol açtığını göstermektedir. Getiri ağırlıklı portföy, eşit ağırlıklı portföye ve piyasa endeksine kıyasla genel olarak daha yüksek performans göstermiştir. Bu bulgular, özellikle GRU gibi derin öğrenme algoritmalarının, portföy seçimi bağlamında yatırım stratejilerini ve portföy yönetimini geliştirmedeki etkinliğini vurgulamaktadır. Çalışma, diğer endeksleri ve makine öğrenimi modellerini keşfetmeye yönelik gelecekteki araştırmalar için bir çerçeve sunmaktadır.
References
-
Altay, E. (2012) “Sermaye Piyasasında Varlık Fiyatlama Teorileri: Sermaye Piyasası Teorisi - Arbitraj Fiyatlama Teorisi”, İstanbul: Derin Yayınları.
-
An, Z., and Feng, Z. (2021) “A Stock Price Forecasting Method Using Autoregressive Integrated Moving Average model and Gated Recurrent Unit Network. 2021 International Conference on Big Data Analysis and Computer Science (BDACS)”, 31–34. Kunming, China: IEEE. https://doi.org/10.1109/BDACS53596.2021.00015.
-
Antad, S., Khandelwal, S., Khandelwal, A., Khandare, R., Khandave, P., Khangar, D., and Khanke, R. (2023) “Stock Price Prediction Website Using Linear Regression-A Machine Learning Algorithm. In ITM Web of Conferences”, 56: 1-10. https://doi.org/10.1051/itmconf/20235605016.
-
Bardakçı, A. (2013) “Portföy Yönetimi”, 1. Baskı, İzmir: İlkem Ofset.
-
Berk, N. (2010) “Finansal Yönetim “, 10. Baskı, İstanbul: Türkmen Kitabevi.
-
Bulut, C., and Hüdaverdi, B. (2022) “Hybrid Approaches in Financial Time Series Forecasting: A Stock Market Application”, Ekoist: Journal of Econometrics and Statistics, 37: 53-68.
https://doi.org/10.26650/ekoist.2022.37.1108411.
-
Capiński, M. J., and Kopp, E. (2014) “Portfolio Theory and Risk Management”, England: Cambridge University Press.
-
Chaweewanchon, A., and Chaysiri, R. (2022) “Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning”, International Journal of Financial Studies, 10(3): 1-19. https://doi.org/10.3390/ijfs10030064.
-
Chen, W., Zhang, H., Mehlawat, M. K., and Jia, L. (2021) “Mean–variance Portfolio Optimization Using Machine Learning-Based Stock Price Prediction”, Applied Soft Computing, 100:1-18. https://doi.org/10.1016/j.asoc.2020.106943.
-
Crisostomo, A. S., Chaguile, C. C., and Gustilo, R. (2023) “Stock Market Prediction using Linear Regression”, 2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1-4. Coron, Palawan, Philippines: IEEE. https://doi.org/10.1109/HNICEM60674.2023.10589227.
-
Çınaroğlu, E., and Avcı, T. (2020) “Prediction of THY Stock Value with Artificial Neural Networks”, Ataturk University Journal of Economics and Administrative Sciences, 34(1): 1-19. https://doi.org/10.16951/atauniiibd.530322.
-
Demirci, E., and Karaatlı, M. (2023) “Forecasting Cryptocurrency Prices with LSTM and GRU Models”, Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 10(1): 134-157. https://doi.org/10.30798/makuiibf.1035314.
-
Drake, P. P., and Fabozzi, F. J. (2010) “The Basics of Finance: An Introduction to Financial Markets, Business Finance, & Portfolio Management, (Vol. 192). New Jersey: John Wiley & Sons.
-
Du, J. (2022) “Mean–variance Portfolio Optimization with Deep Learning Based-Forecasts for Cointegrated Stocks”, Expert Systems with Applications, 201: 1-11. https://doi.org/10.1016/j.eswa.2022.117005.
-
Dutta, A., Kumar, S., and Basu, M. (2020) “A Gated Recurrent Unit Approach to Bitcoin Price Prediction”, Journal of Risk and Financial Management, 13(2): 1-16. https://doi.org/10.3390/jrfm13020023.
-
Ferdiansyah, F., Othman, S. H., Md Radzi, R. Z., Stiawan, D., and Sutikno, T. (2023) “Hybrid Gated Recurrent Unit Bidirectional-Long Short-Term Memory Model to Improve Cryptocurrency Prediction Accuracy”, IAES International Journal of Artificial Intelligence (IJ-AI), 12(1): 251-261. https://doi.org/10.11591/ijai.v12.i1.pp251-261.
-
Fischer, T., and Krauss, C. (2018) “Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions”, European Journal of Operational Research, 270(2): 654-669. https://doi.org/10.1016/j.ejor.2017.11.054.
-
Ghadimpour, M., and Ebrahimi, S. B. (2022) “Forecasting Financial Time Series Using Deep Learning Networks: Evidence from Long-Short Term Memory and Gated Recurrent Unit”, Iranian Journal of Finance, 6(4): 81-94. https://doi.org/10.30699/ijf.2022.313164.1286.
-
Hamzah, H., Chrismawan, P. E. E., Winardi, S., and Tambunan, R. (2023) “Robust Stock Price Prediction using Gated Recurrent Unit (GRU)”, International Journal of Informatics and Computation (IJICOM), 5(1): 29-38. https://doi.org/10.35842/ijicom.v5i1.56.
-
Haryono, A. T., Sarno, R., and Sungkono, K. R. (2023) “Transformer-Gated Recurrent Unit Method for Predicting Stock Price Based on News Sentiments and Technical Indicators”, IEEE Access, 11: 77132-77146. https://doi.org/10.1109/ACCESS.2023.3298445.
-
Huang, C.-F. (2012) “A Hybrid Stock Selection Model Using Genetic Algorithms and Support Vector Regression”, Applied Soft Computing, 12(2): 807-818. https://doi.org/10.1016/j.asoc.2011.10.009.
-
Kaczmarek, T., and Perez, K. (2022) “Building Portfolios Based on Machine Learning Predictions”, Economic Research-Ekonomska Istraživanja, 35(1): 19–37. https://doi.org/10.1080/1331677X.2021.1875865.
-
Karim, Md. E., and Ahmed, S. (2021) “A Deep Learning-Based Approach for Stock Price Prediction Using Bidirectional Gated Recurrent Unit and Bidirectional Long Short-Term Memory Model”, 2021 2nd Global Conference for Advancement in Technology (GCAT), 1-8. https://doi.org/10.1109/GCAT52182.2021.9587895.
-
Kaya, F. (2019) “Finansal Yönetim “, 2. Baskı, İstanbul: Beta Basım Yayım Dağıtım A.Ş.
-
Koç Ustalı, N., Tosun, N., and Tosun, Ö. (2021) “Stock Price Prediction with Machine Learning Techniques”, Eskisehir Osmangazi University Journal of Economics and Administrative Sciences, 16(1): 1-16. https://doi.org/10.17153/oguiibf.636017.
-
Koumou, G. B. (2020) “Diversification and Portfolio Theory: A Review”, Financial Markets and Portfolio Management, 34(3): 267–312. https://doi.org/10.1007/s11408-020-00352-6.
-
Ks, R., and Mk, S. (2021) “Stock Market Prediction Using Deep Learning Techniques”, 2021 International Conference on Communication, Control and Information Sciences (ICCISc), 1-6. https://doi.org/10.1109/ICCISc52257.2021.9484960.
-
Lawi, A., Mesra, H., and Amir, S. (2022) “Implementation of Long Short-Term Memory and Gated Recurrent Units on Grouped Time-Series Data to Predict Stock Prices Accurately”, Journal of Big Data, 9(1): 1-19. https://doi.org/10.1186/s40537-022-00597-0.
-
Li, X., Sigov, A., Ratkin, L., Ivanov, L. A., and Li, L. (2023) “Artificial Intelligence Applications in Finance: A Survey”, Journal of Management Analytics, 10(4): 676–692. https://doi.org/10.1080/23270012.2023.2244503.
-
Lien Minh, D., Sadeghi-Niaraki, A., Huy, H. D., Min, K., and Moon, H. (2018) “Deep Learning Approach for Short-Term Stock Trends Prediction Based on Two-Stream Gated Recurrent Unit Network”, IEEE Access, 6:55392–55404. https://doi.org/10.1109/ACCESS.2018.2868970.
-
Ma, Y., Han, R., and Wang, W. (2021) “Portfolio Optimization with Return Prediction Using Deep Learning and Machine Learning”, Expert Systems with Applications, 165: 1-15. https://doi.org/10.1016/j.eswa.2020.113973.
-
Mabrouk, N., Chihab, M., Hachkar, Z., and Chihab, Y. (2022) “Intraday Trading Strategy Based on Gated Recurrent Unit and Convolutional Neural Network: Forecasting Daily Price Direction”, International Journal of Advanced Computer Science and Applications, 13(3): 585-591. http://dx.doi.org/10.14569/IJACSA.2022.0130369.
-
Pabuçcu, H. (2019) “Forecasting Stock Market Index Movements with Machine Learning Algorithms”, International Journal of Economic and Administrative Studies (23): 179-190.
https://doi.org/10.18092/ulikidince.484138.
-
Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., and Duarte, W. M. (2019) “Decision-making for Financial Trading: A Fusion Approach of Machine Learning and Portfolio Selection”, Expert Systems with Applications, 115: 635-655. https://doi.org/10.1016/j.eswa.2018.08.003.
-
Pawaskar, S. (2022) “Stock Price Prediction Using Machine Learning Algorithms”, International Journal for Research in Applied Science and Engineering Technology (IJRASET), 10:667-673. https://doi.org/10.22214/ijraset.2022.39891.
-
Rahman, M. O., Hossain, S., Junaid, T.-S., Forhad, S. A., and Hossen, M. K. (2019) “Predicting Prices of Stock Market using Gated Recurrent Units (GRUs) Neural Networks”, International Journal of Computer Science and Network Secu, 19(1): 213–222.
-
Rajanikanth, J., Haritha, K., and Shiva Shankar, R. (2023) “Forecasting Stock Close Price Using Machine Learning Models”, ARPN Journal of Engineering and Applied Sciences, 18(4): 412–420.
-
Rather, A. M., Agarwal, A., and Sastry, V. N. (2015) “Recurrent Neural Network and a Hybrid Model for Prediction of Stock Returns”, Expert Systems with Applications, 42(6): 3234-3241. https://doi.org/10.1016/j.eswa.2014.12.003.
-
Remolina, N., and Gurrea-Martinez, A. (Eds.). (2023) “Artificial Intelligence in Finance: Challenges, Opportunities and Regulatory Developments”, Tallinn: Edward Elgar Publishing. https://doi.org/10.4337/9781803926179.
-
Saboor, A., Hussain, A., Lord Y. Agbley, B., Ul Haq, A., Ping Li, J., and Kumar, R. (2023) “Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques”, Intelligent Automation & Soft Computing, 37(2): 1325-1344. https://doi.org/10.32604/iasc.2023.038849.
-
Sadon, A. N., Ismail, S., Jafri, N. S., and Shaharudin, S. M. (2021) “Long Short-Term vs Gated Recurrent Unit Recurrent Neural Network for Google Stock Price Prediction”, 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS), 1-5. https://doi.org/10.1109/AiDAS53897.2021.9574312.
-
Shen, G., Tan, Q., Zhang, H., Zeng, P., and Xu, J. (2018) “Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions”, Procedia Computer Science, 131: 895-903. https://doi.org/10.1016/j.procs.2018.04.298.
-
Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. T., Doreswamy, D., and Bhat, S. K. (2023) “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications”, International Journal of Financial Studies, 11(3): 1-22.
https://doi.org/10.3390/ijfs11030094.
-
Sun, Z., and Zhao, S. (2020) “Machine Learning in Stock Price Forecast”, In E3S Web of Conferences, 214: 1-6. https://doi.org/10.1051/e3sconf/202021402050.
-
Ta, V.-D., Liu, C.-M., and Tadesse, D. A. (2020) “Portfolio Optimization-Based Stock Prediction Using Long-Short Term Memory Network in Quantitative Trading”, Applied Sciences, 10(2): 1-20. https://doi.org/10.3390/app10020437.
-
Tripathy, N., Parida, S., and Nayak, S. K. (2023) “Forecasting Stock Market Indices Using Gated Recurrent Unit (GRU) Based Ensemble Models: LSTM-GRU”, International Journal of Computer and Communication Technology, 9(1):85-90. https://doi.org/10.47893/IJCCT.2023.1443.
-
Toprak, Ş., Çağil, G., and Kökçam, A. H. (2023) “Stock Closing Price Prediction with Machine Learning Algorithms: PETKM Stock Example In BIST”, Duzce University Journal of Science and Technology, 11(2): 958-976. https://doi.org/10.29130/dubited.1096767.
-
Usta, Ö. (2008) “İşletme Finansı ve Finansal Yönetim”, 3. Baskı, Ankara: Detay Yayıncılık.
-
Wang, W., Li, W., Zhang, N., and Liu, K. (2020) “Portfolio Formation with Preselection Using Deep Learning from Long-Term Financial Data”, Expert Systems with Applications, 143: 1-17. https://doi.org/10.1016/j.eswa.2019.113042.
-
Wenjie, L., Jiazheng, L., Jingyang, W., and Shaowen, W. (2022) “A Novel Model for Stock Closing Price Prediction Using CNN-Attention-GRU-Attention”, Economic Computation and Economic Cybernetics Studies and Research, 56(3): 251-264. https://doi.org/10.24818/18423264/56.3.22.16.
-
Yan, J.-A. (2018) “Introduction to Stochastic Finance”, (1st ed. 2018). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-13-1657-9.
-
Zhao, J., Zeng, D., Liang, S., Kang, H. and Liu, Q. (2020) “Prediction Model for Stock Price Trend Based on Recurrent Neural Network”, Journal of Ambient Intelligence and Humanized Computing, 12(1): 745–753. https://doi:10.1007/s12652-020-02057-0.