Review
BibTex RIS Cite

Gıda Atıklarının Teknolojik Olarak Değerlendirilmesi: Atık Esaslı Polimerler ve Tekstilde Kullanımı

Year 2021, Volume: 6 Issue: 2, 21 - 31, 30.12.2021

Abstract

Doğal kaynaklardan faydalanma süreci insanlığın ve medeniyetin gelişimiyle şekil değiştirmiş, ıslah edilmiş tarım ekolojisi ve işlenerek sofrada son bulan gıda elde etme süreci ile insanlığa beslenmede önemli bir avantaj sunarken, gıda ve tarımsal atıkların yarattığı sorunlar ve bertaraf edilme süreçleri gibi dezavantajlarla mücadele etme sorununu da beraberinde getirmiştir. Atık oluşumunun engellenmesi asıl amaç olmakla birlikte, oluşmuş atıkların değerlendirme süreçleri hem enerjiyi verimli kullanmak başta olmak üzere çevresel olumsuz etkilerini en aza indirmek, hem de katma değerli ürün elde ederek kayıpları dengelemek adına asıl amacın aksine hala pratikte en çok tercih edilen yöntemleri oluşturmaktadır. Bu çalışma ile literatürde yapılan çalışmalar ışığında; atık gıda ürünlerinin hammadde olarak kullanıldığı teknolojik ürünlere geri dönüştürme sürecinde elde edilen polimerleri ve yüksek enerji kullanımında hala üst sıralarda yer alarak çevre kirliliğine olumsuz katkı sağlayan tekstil sektöründe bu polimerlerin kullanım imkanları ve potansiyeli incelenmiştir.

References

  • Ahmed, M., Verma, A. K., & Patel, R. (2020). Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 1–13.
  • Arshad, M., Zubair, M., & Ullah, A. (2020). Miscibility, properties, and biodegradability of chitin and chitosan. Handbook of Chitin and Chitosan (ss. 377–399). Elsevier.
  • Berezina, N. (2016). Production and application of chitin. Physical Sciences Reviews (C. 1, Sayı 9). De Gruyter.
  • Bhuimbar, M. V., Bhagwat, P. K., & Dandge, P. B. (2019). Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. Journal of Environmental Chemical Engineering, 7(2).
  • Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International (C. 123, ss. 226–240). Elsevier Ltd.
  • Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808.
  • Çelebi, M., & Karagöz, İ. (2019). Biyobozunur Polimerler Ve Özellikleri; Nişasta, Poli(Glikolik Asit), Poli(Laktik Asit) Ve Poli(Ɛkaprolakton). Mahmut Turhan (Ed.), Mühendislik Alanında Yeni Ufuklar (Atilla ATİ, ss. 275–292). Gece Kitaplığı.
  • El-banna, F. S., Mahfouz, M. E., Leporatti, S., El-Kemary, M., & Hanafy, N. A. N. (2019). Chitosan as a natural copolymer with unique properties for the development of hydrogels. Applied Sciences (Switzerland) (C. 9, Sayı 11). MDPI AG.
  • European Bank. (2021). FOOD LOSS AND WASTE SECTOR GUIDELINES-TURKEY.
  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews (C. 107, ss. 367–392). Elsevier B.V.
  • Favaro, L., Basaglia, M., & Casella, S. (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels, Bioproducts and Biorefining, 13(1), 208–227.
  • Ferrario, C., Rusconi, F., Pulaj, A., Macchi, R., Landini, P., Paroni, M., Colombo, G., Martinello, T., Melotti, L., Gomiero, C., Daniela Candia Carnevali, M., Bonasoro, F., Patruno, M., & Sugni, M. (2020). From food waste to innovative biomaterial: Sea urchin-derived collagen for applications in skin regenerative medicine. Marine Drugs, 18(8).
  • Galindo, S., & Ureña-Núñez, F. (2018). Enhanced surface hydrophobicity of poly(lactic acid) by Co 60 gamma ray irradiation. Revista Mexicana de Física (C. 64).
  • Grancarić, A. M., Jerković, I., & Tarbuk, A. (2013). Bioplastics in Textiles. KATEGORIZIRANI RADOVI-Polimeri, 34(1), 9–14.
  • Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 48, 40–50.
  • Hu, Y., Daoud, W. A., Fei, B., Chen, L., Kwan, T. H., & Ki Lin, C. S. (2017). Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. Journal of Cleaner Production, 165, 157–167.
  • Huang, F. L., Fu, J. Y., & Cheng, K. B. (2018). Development of Woven Fabrics with High-Count and Cooling Collagen. Latest Trends in Textile and Fashion Designing, 3(2), 299-301.
  • Jõgi, K., & Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production. Sustainable Chemistry and Pharmacy (C. 18, ss. 1–10). Elsevier B.V.
  • Kaygusuz, B., & Özerinç, S. (2018). 3 Boyutlu Yazıcı ile Üretilen PLA Bazlı Yapıların Mekanik Özelliklerinin İncelenmesi. MAKİNA TASARIM VE İMALAT DERGİSİ, 16(1), 1–6.
  • Kılınç, M., Tomar, O., & Çağlar, A. (2017). Biyobozunur Gıda Ambalaj Malzemeleri. Afyon Kocatepe University Journal of Sciences and Engineering, 17(3), 988–996.
  • Kumar Gadgey, K., & Bahekar, A. (2017). Studies on extraction methods of chitin from crab shell and investigation of its mechanical properties. International Journal of Mechanical Engineering and Technology, 8(2), 220–231.
  • Kumar Gadgey, K., & Sharma, G. S. (2017). INVESTIGATION OF MECHANICAL PROPERTIES OF CHITOSAN BASED FILMS: A REVIEW. International Journal of Advanced Research in Engineering and Technology, 8(6), 93–102.
  • Kwan, T. H., Hu, Y., & Lin, C. S. K. (2018). Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. Journal of Cleaner Production, 181, 72–87.
  • Mathur, N. K., & Narang, C. K. (1990). Chitin and Chitosan, Versatile Polysaccharides from Marine Animals. Journal of Chemical Education, 67(11), 938–942.
  • Metro Türkiye T.C. Tarım ve Orman Bakanlığı ve (FAO) Birleşmiş Milletler Gıda ve Tarım Örgütü. (2021). Otel, Restoran Ve Diğer Toplu Tüketim Yerlerinde Gıda İsrafı İle Mücadele Kılavuzu. https://gidanikoru.com/_uploads/Gıdanı Koru Horeca Kılavuz.pdf
  • Meyer, M., Baltzer, H., & Schwikal, K. (2010). Collagen fibres by thermoplastic and wet spinning. Materials Science and Engineering C, 30(8), 1266–1271.
  • Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management (C. 233, ss. 352–370). Academic Press.
  • Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology (C. 10, Sayı 6, ss. 1338–1352). John Wiley and Sons Ltd.
  • Nisha, S., Seenivasan, A., & Vasanth, D. (2016). Chitin and its derivatives: structure, production, and their applications Biosynthesis of Chitinolytic enzymes View project Chitin and its derivatives: structure, production, and their applications. International conference on Signal Processing. SCOPES.
  • Ong, K. L., Kaur, G., Pensupa, N., Uisan, K., & Lin, C. S. K. (2018). Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresource Technology (C. 248, ss. 100–112). Elsevier Ltd.
  • Ouadi, M., Bashir, M. A., Speranza, L. G., Jahangiri, H., & Hornung, A. (2019). Food and Market Waste-A Pathway to Sustainable Fuels and Waste Valorization. Energy and Fuels, 33(10), 9843–9850.
  • Özdemir, D., Schoukens, G., Göktepe, Ö., & Göktepe, F. (2008). Preparation of di-butyryl-chitin scaffolds by using salt leaching method for tissue engineering and their characteristics. Journal of Applied Polymer Science, 109(5), 2882–2887.
  • Öztürk, D., & Çokgör, E. (2020). Turşu endüstrisi atıksularının biyopolimer üretim potansiyelinin belirlenmesi (Y. Lisans tezi). İSTANBUL TEKNİK ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, Çevre Mühendisliği Anabilim Dalı Çevre Mühendisliği Bilimi ve Yönetimi Programı.
  • Pokhrel, S., Yadav, P. N., & Adhikari, R. (2015). Applications of Chitin and Chitosan in Industry and Medical Science: A Review. Nepal Journal of Science and Technology, 16(1), 99–104.
  • Rao, P., & Rathod, V. (2019). Valorization of Food and Agricultural Waste: A Step towards Greener Future. The Chemical Record, 19(9), 1858–1871.
  • Reddy, C. S. K., Ghai, R., Rashmi, & Kalia, V. C. (2003). Polyhydroxyalkanoates: An overview. Bioresource Technology (C. 87, Sayı 2, ss. 137–146).
  • Sakai, K., Poudel, P., & Shirai, Y. (2012). Total Recycle System for Municipal Food Waste for Poly-L-Lactic Acid Output. M. Petre (Ed.), Advances in Applied Biotechnology (ss. 23–40). InTech.
  • Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic polymers from food waste: Resources and synthesis. Polymer Reviews, 53(4), 627–694.
  • Santos, V. P., Marques, N. S. S., Maia, P. C. S. V., de Lima, M. A. B., Franco, L. de O., & de Campos-Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences (C. 21, Sayı 12, ss. 1–17).
  • Song, L., Yang, D., Liu, R., Liu, S., Dai, L., & Dai, X. (2021). Microbial production of lactic acid from food waste: latest advances, limits, and perspectives. Bioresource Technology, 126052. https://doi.org/10.1016/j.biortech.2021.126052
  • Songür, A. N., & Çakıroğlu, F. P. (2016). Gıda Kayıpları ve Atık Yönetimi. Turkiye Klinikleri J Nutr Diet-Special Topics, 2(3), 21–26.
  • Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 10(1).
  • Tang, J., Wang, X., Hu, Y., Zhang, Y., & Li, Y. (2016). Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Management, 52, 278–285.
  • Tekiner, İ. H., Mercan, N. N., Kahraman, A., & Özel, M. (2021). Dünya ve Türkiye’de gıda israfı ve kaybına genel bir bakış. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 123–128.
  • Üçgül, İ., Aras, S., & Özdemir Küçükçapraz, D. (2016). Farkli Hammadde Kaynaklarindan Ki̇ti̇ni̇n Saflaştirilmasi Ve Teksti̇l Uygulamalari. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 46–56.
  • Üner, I., & Koçak, E. D. (2012). Poli(Laktik Asit)’İn Kullanım Alanları Ve Nano Lif Üretimdeki Uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79–88.
  • www.polymerdatabase.com. (2021). POLYHYDROXYALKANOATES (PHAS). Polymer Properties Database.
  • Yılmaz, M., & Beyatlı, Y. (2003). Biyoplastik: Poli-β-Hidroksibütirat (PHB) 1. Orlab On-Line Mikrobiyoloji Dergisi, 1(9), 1–33.
Year 2021, Volume: 6 Issue: 2, 21 - 31, 30.12.2021

Abstract

References

  • Ahmed, M., Verma, A. K., & Patel, R. (2020). Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 1–13.
  • Arshad, M., Zubair, M., & Ullah, A. (2020). Miscibility, properties, and biodegradability of chitin and chitosan. Handbook of Chitin and Chitosan (ss. 377–399). Elsevier.
  • Berezina, N. (2016). Production and application of chitin. Physical Sciences Reviews (C. 1, Sayı 9). De Gruyter.
  • Bhuimbar, M. V., Bhagwat, P. K., & Dandge, P. B. (2019). Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. Journal of Environmental Chemical Engineering, 7(2).
  • Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International (C. 123, ss. 226–240). Elsevier Ltd.
  • Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808.
  • Çelebi, M., & Karagöz, İ. (2019). Biyobozunur Polimerler Ve Özellikleri; Nişasta, Poli(Glikolik Asit), Poli(Laktik Asit) Ve Poli(Ɛkaprolakton). Mahmut Turhan (Ed.), Mühendislik Alanında Yeni Ufuklar (Atilla ATİ, ss. 275–292). Gece Kitaplığı.
  • El-banna, F. S., Mahfouz, M. E., Leporatti, S., El-Kemary, M., & Hanafy, N. A. N. (2019). Chitosan as a natural copolymer with unique properties for the development of hydrogels. Applied Sciences (Switzerland) (C. 9, Sayı 11). MDPI AG.
  • European Bank. (2021). FOOD LOSS AND WASTE SECTOR GUIDELINES-TURKEY.
  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews (C. 107, ss. 367–392). Elsevier B.V.
  • Favaro, L., Basaglia, M., & Casella, S. (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels, Bioproducts and Biorefining, 13(1), 208–227.
  • Ferrario, C., Rusconi, F., Pulaj, A., Macchi, R., Landini, P., Paroni, M., Colombo, G., Martinello, T., Melotti, L., Gomiero, C., Daniela Candia Carnevali, M., Bonasoro, F., Patruno, M., & Sugni, M. (2020). From food waste to innovative biomaterial: Sea urchin-derived collagen for applications in skin regenerative medicine. Marine Drugs, 18(8).
  • Galindo, S., & Ureña-Núñez, F. (2018). Enhanced surface hydrophobicity of poly(lactic acid) by Co 60 gamma ray irradiation. Revista Mexicana de Física (C. 64).
  • Grancarić, A. M., Jerković, I., & Tarbuk, A. (2013). Bioplastics in Textiles. KATEGORIZIRANI RADOVI-Polimeri, 34(1), 9–14.
  • Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 48, 40–50.
  • Hu, Y., Daoud, W. A., Fei, B., Chen, L., Kwan, T. H., & Ki Lin, C. S. (2017). Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. Journal of Cleaner Production, 165, 157–167.
  • Huang, F. L., Fu, J. Y., & Cheng, K. B. (2018). Development of Woven Fabrics with High-Count and Cooling Collagen. Latest Trends in Textile and Fashion Designing, 3(2), 299-301.
  • Jõgi, K., & Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production. Sustainable Chemistry and Pharmacy (C. 18, ss. 1–10). Elsevier B.V.
  • Kaygusuz, B., & Özerinç, S. (2018). 3 Boyutlu Yazıcı ile Üretilen PLA Bazlı Yapıların Mekanik Özelliklerinin İncelenmesi. MAKİNA TASARIM VE İMALAT DERGİSİ, 16(1), 1–6.
  • Kılınç, M., Tomar, O., & Çağlar, A. (2017). Biyobozunur Gıda Ambalaj Malzemeleri. Afyon Kocatepe University Journal of Sciences and Engineering, 17(3), 988–996.
  • Kumar Gadgey, K., & Bahekar, A. (2017). Studies on extraction methods of chitin from crab shell and investigation of its mechanical properties. International Journal of Mechanical Engineering and Technology, 8(2), 220–231.
  • Kumar Gadgey, K., & Sharma, G. S. (2017). INVESTIGATION OF MECHANICAL PROPERTIES OF CHITOSAN BASED FILMS: A REVIEW. International Journal of Advanced Research in Engineering and Technology, 8(6), 93–102.
  • Kwan, T. H., Hu, Y., & Lin, C. S. K. (2018). Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. Journal of Cleaner Production, 181, 72–87.
  • Mathur, N. K., & Narang, C. K. (1990). Chitin and Chitosan, Versatile Polysaccharides from Marine Animals. Journal of Chemical Education, 67(11), 938–942.
  • Metro Türkiye T.C. Tarım ve Orman Bakanlığı ve (FAO) Birleşmiş Milletler Gıda ve Tarım Örgütü. (2021). Otel, Restoran Ve Diğer Toplu Tüketim Yerlerinde Gıda İsrafı İle Mücadele Kılavuzu. https://gidanikoru.com/_uploads/Gıdanı Koru Horeca Kılavuz.pdf
  • Meyer, M., Baltzer, H., & Schwikal, K. (2010). Collagen fibres by thermoplastic and wet spinning. Materials Science and Engineering C, 30(8), 1266–1271.
  • Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management (C. 233, ss. 352–370). Academic Press.
  • Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology (C. 10, Sayı 6, ss. 1338–1352). John Wiley and Sons Ltd.
  • Nisha, S., Seenivasan, A., & Vasanth, D. (2016). Chitin and its derivatives: structure, production, and their applications Biosynthesis of Chitinolytic enzymes View project Chitin and its derivatives: structure, production, and their applications. International conference on Signal Processing. SCOPES.
  • Ong, K. L., Kaur, G., Pensupa, N., Uisan, K., & Lin, C. S. K. (2018). Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresource Technology (C. 248, ss. 100–112). Elsevier Ltd.
  • Ouadi, M., Bashir, M. A., Speranza, L. G., Jahangiri, H., & Hornung, A. (2019). Food and Market Waste-A Pathway to Sustainable Fuels and Waste Valorization. Energy and Fuels, 33(10), 9843–9850.
  • Özdemir, D., Schoukens, G., Göktepe, Ö., & Göktepe, F. (2008). Preparation of di-butyryl-chitin scaffolds by using salt leaching method for tissue engineering and their characteristics. Journal of Applied Polymer Science, 109(5), 2882–2887.
  • Öztürk, D., & Çokgör, E. (2020). Turşu endüstrisi atıksularının biyopolimer üretim potansiyelinin belirlenmesi (Y. Lisans tezi). İSTANBUL TEKNİK ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, Çevre Mühendisliği Anabilim Dalı Çevre Mühendisliği Bilimi ve Yönetimi Programı.
  • Pokhrel, S., Yadav, P. N., & Adhikari, R. (2015). Applications of Chitin and Chitosan in Industry and Medical Science: A Review. Nepal Journal of Science and Technology, 16(1), 99–104.
  • Rao, P., & Rathod, V. (2019). Valorization of Food and Agricultural Waste: A Step towards Greener Future. The Chemical Record, 19(9), 1858–1871.
  • Reddy, C. S. K., Ghai, R., Rashmi, & Kalia, V. C. (2003). Polyhydroxyalkanoates: An overview. Bioresource Technology (C. 87, Sayı 2, ss. 137–146).
  • Sakai, K., Poudel, P., & Shirai, Y. (2012). Total Recycle System for Municipal Food Waste for Poly-L-Lactic Acid Output. M. Petre (Ed.), Advances in Applied Biotechnology (ss. 23–40). InTech.
  • Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic polymers from food waste: Resources and synthesis. Polymer Reviews, 53(4), 627–694.
  • Santos, V. P., Marques, N. S. S., Maia, P. C. S. V., de Lima, M. A. B., Franco, L. de O., & de Campos-Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences (C. 21, Sayı 12, ss. 1–17).
  • Song, L., Yang, D., Liu, R., Liu, S., Dai, L., & Dai, X. (2021). Microbial production of lactic acid from food waste: latest advances, limits, and perspectives. Bioresource Technology, 126052. https://doi.org/10.1016/j.biortech.2021.126052
  • Songür, A. N., & Çakıroğlu, F. P. (2016). Gıda Kayıpları ve Atık Yönetimi. Turkiye Klinikleri J Nutr Diet-Special Topics, 2(3), 21–26.
  • Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 10(1).
  • Tang, J., Wang, X., Hu, Y., Zhang, Y., & Li, Y. (2016). Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Management, 52, 278–285.
  • Tekiner, İ. H., Mercan, N. N., Kahraman, A., & Özel, M. (2021). Dünya ve Türkiye’de gıda israfı ve kaybına genel bir bakış. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 123–128.
  • Üçgül, İ., Aras, S., & Özdemir Küçükçapraz, D. (2016). Farkli Hammadde Kaynaklarindan Ki̇ti̇ni̇n Saflaştirilmasi Ve Teksti̇l Uygulamalari. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 46–56.
  • Üner, I., & Koçak, E. D. (2012). Poli(Laktik Asit)’İn Kullanım Alanları Ve Nano Lif Üretimdeki Uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79–88.
  • www.polymerdatabase.com. (2021). POLYHYDROXYALKANOATES (PHAS). Polymer Properties Database.
  • Yılmaz, M., & Beyatlı, Y. (2003). Biyoplastik: Poli-β-Hidroksibütirat (PHB) 1. Orlab On-Line Mikrobiyoloji Dergisi, 1(9), 1–33.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Wearable Materials
Journal Section The general engineering
Authors

Dicle Özdemir Küçükçapraz

Publication Date December 30, 2021
Acceptance Date December 14, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

IEEE D. Özdemir Küçükçapraz, “Gıda Atıklarının Teknolojik Olarak Değerlendirilmesi: Atık Esaslı Polimerler ve Tekstilde Kullanımı”, Yekarum, vol. 6, no. 2, pp. 21–31, 2021.