Review
BibTex RIS Cite

A Review on Hydrogen with a Critical Role in Sustainable Energy

Year 2024, Volume: 9 Issue: 1, 63 - 90, 25.06.2024

Abstract

Developing sustainable and renewable energies can solve the energy crisis in the world. In this regard, one of the focal points in the energy field is to expand the use of lower-carbon technologies soon. Furthermore, it is necessary to prevent depletion problems of non-renewable energy resources and environmental issues such as climate change. Energy security can be improved by using sustainable and renewable energy sources. Transitioning to sustainable energy is vital, especially in sectors with high energy consumption, such as aviation. Hydrogen can play a critical role in the transition to sustainable energy, as it has enormous potential and can be used as an energy carrier. However, the purity rate of the hydrogen produced and the storage problems of the hydrogen are obstacles to the widespread use of hydrogen. The purity of hydrogen is related to the technology used to produce the hydrogen. In this context, hydrogen production with a renewable energy source is mentioned in this study. Also, the usability of a metal hydride to overcome hydrogen storage problems is discussed. In the literature, many researches and studies exist on sustainable development goals and hydrogen energy. However, studies and analyses on the relationship between hydrogen energy and sustainable development goals are lacking. This review mentions the importance of hydrogen energy in line with sustainable development goals. In addition, it is aimed to create a source for future studies by compiling studies in the literature on sustainable energy sources, hydrogen production methods and hydrogen storage with metal hydrides.

References

  • [1] M. Aydin, “Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries,” Renew. Energy, vol. 136, pp. 599–606, Jun. 2019, doi: 10.1016/j.renene.2019.01.008.
  • [2] S. Firoz, “A review: Advantages and Disadvantages of Biodiesel,” vol. 04, no. 11.
  • [3] H. Ahmad, S. K. Kamarudin, L. J. Minggu, U. A. Hasran, S. Masdar, and W. R. Wan Daud, “Enhancing methanol oxidation with a TiO2-modified semiconductor as a photo-catalyst,” Int. J. Hydrog. Energy, vol. 42, no. 14, pp. 8986–8996, Apr. 2017, doi: 10.1016/j.ijhydene.2016.04.135.
  • [4] İ. İnan, İ. Akbulut, and E. Aslan, “ENERJİ SORUNUNUN ÇÖZÜMÜNDE YENİLENEMEZ VE YENİLENEBİLİR ENERJİ KAYNAKLARININ YERİ VE ÖNEMİ,” Türk Dünya. Araştırmaları, vol. 120, no. 237, Art. no. 237, Dec. 2018.
  • [5] W. H. Organization, “COP24 special report: health and climate change,” 2018.
  • [6] A. Darvish Falehi and M. Rafiee, “Maximum efficiency of wind energy using novel Dynamic Voltage Restorer for DFIG based Wind Turbine,” Energy Rep., vol. 4, pp. 308–322, Nov. 2018, doi: 10.1016/j.egyr.2018.01.006.
  • [7] S. Farhad, M. Saffar-Avval, and M. Younessi-Sinaki, “Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis,” Int. J. Energy Res., vol. 32, no. 1, pp. 1–11, 2008, doi: 10.1002/er.1319.
  • [8] A. G. Olabi and M. A. Abdelkareem, “Renewable energy and climate change,” Renew. Sustain. Energy Rev., vol. 158, p. 112111, Apr. 2022, doi: 10.1016/j.rser.2022.112111.
  • [9] A. Zoungrana and M. Çakmakci, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” Int. J. Energy Res., vol. 45, no. 3, pp. 3495–3522, 2021, doi: 10.1002/er.6062.
  • [10] M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, “Assessment of wind energy potential using wind energy conversion system,” J. Clean. Prod., vol. 216, pp. 346–360, Apr. 2019, doi: 10.1016/j.jclepro.2019.01.128.
  • [11] M. Mohsin, H. W. Kamran, M. Atif Nawaz, M. Sajjad Hussain, and A. S. Dahri, “Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies,” J. Environ. Manage., vol. 284, p. 111999, Apr. 2021, doi: 10.1016/j.jenvman.2021.111999.
  • [12] A. Ahmed, T. Ge, J. Peng, W.-C. Yan, B. T. Tee, and S. You, “Assessment of the renewable energy generation towards net-zero energy buildings: A review,” Energy Build., vol. 256, p. 111755, Feb. 2022, doi: 10.1016/j.enbuild.2021.111755.
  • [13] A. A. Kebede, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, “A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration,” Renew. Sustain. Energy Rev., vol. 159, p. 112213, May 2022, doi: 10.1016/j.rser.2022.112213.
  • [14] Z.-Y. Zhao, R.-D. Chang, and Y.-L. Chen, “What hinder the further development of wind power in China?—A socio-technical barrier study,” Energy Policy, vol. 88, pp. 465–476, Jan. 2016, doi: 10.1016/j.enpol.2015.11.004.
  • [15] A. Chehouri, R. Younes, A. Ilinca, and J. Perron, “Review of performance optimization techniques applied to wind turbines,” Appl. Energy, vol. 142, pp. 361–388, Mar. 2015, doi: 10.1016/j.apenergy.2014.12.043.
  • [16] Ş. Anatürk, “Yenilenebilir ve Yenilenemeyen Enerji Kaynakları Ile Ekonomik Büyüme Arasındaki Ilişki: Türkiye Örneğ,” PhD Thesis, Anadolu University (Turkey), 2021.
  • [17] J. J. Cartelle Barros, M. Lara Coira, M. P. de la Cruz López, and A. del Caño Gochi, “Comparative analysis of direct employment generated by renewable and non-renewable power plants,” Energy, vol. 139, pp. 542–554, Nov. 2017, doi: 10.1016/j.energy.2017.08.025.
  • [18] P. Sadorsky, “Wind energy for sustainable development: Driving factors and future outlook,” J. Clean. Prod., vol. 289, p. 125779, Mar. 2021, doi: 10.1016/j.jclepro.2020.125779.
  • [19] M. Han, J. Lao, Q. Yao, B. Zhang, and J. Meng, “Carbon inequality and economic development across the Belt and Road regions,” J. Environ. Manage., vol. 262, p. 110250, May 2020, doi: 10.1016/j.jenvman.2020.110250.
  • [20] A. Uihlein, S. Ehrenberger, and L. Schebek, “Utilisation options of renewable resources: a life cycle assessment of selected products,” J. Clean. Prod., vol. 16, no. 12, pp. 1306–1320, Aug. 2008, doi: 10.1016/j.jclepro.2007.06.009.
  • [21] R. Marks-Bielska, S. Bielski, K. Pik, and K. Kurowska, “The Importance of Renewable Energy Sources in Poland’s Energy Mix,” Energies, vol. 13, no. 18, Art. no. 18, Jan. 2020, doi: 10.3390/en13184624.
  • [22] I. Dincer, “Renewable energy and sustainable development: a crucial review,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157–175, Jun. 2000, doi: 10.1016/S1364-0321(99)00011-8.
  • [23] S. O. Oyedepo, “Towards achieving energy for sustainable development in Nigeria,” Renew. Sustain. Energy Rev., vol. 34, pp. 255–272, Jun. 2014, doi: 10.1016/j.rser.2014.03.019.
  • [24] M. Can and Z. Ahmed, “Towards sustainable development in the European Union countries: Does economic complexity affect renewable and non-renewable energy consumption?,” Sustain. Dev., vol. 31, no. 1, pp. 439–451, 2023, doi: 10.1002/sd.2402.
  • [25] J. Bei and C. Wang, “Renewable energy resources and sustainable development goals: Evidence based on green finance, clean energy and environmentally friendly investment,” Resour. Policy, vol. 80, p. 103194, Jan. 2023, doi: 10.1016/j.resourpol.2022.103194.
  • [26] G. E. Halkos and A. S. Tsirivis, “Electricity Production and Sustainable Development: The Role of Renewable Energy Sources and Specific Socioeconomic Factors,” Energies, vol. 16, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/en16020721.
  • [27] T. Güney, “Renewable energy, non-renewable energy and sustainable development,” Int. J. Sustain. Dev. World Ecol., vol. 26, no. 5, pp. 389–397, Jul. 2019, doi: 10.1080/13504509.2019.1595214.
  • [28] C. R. Kumar. J and M. A. Majid, “Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities,” Energy Sustain. Soc., vol. 10, no. 1, p. 2, Jan. 2020, doi: 10.1186/s13705-019-0232-1.
  • [29] M. Rezaei, “The Role of Renewable Energies in Sustainable Development: Case Study Iran,” Iran. J. Energy Environ., vol. 4, no. 4, Dec. 2013, doi: 10.5829/idosi.ijee.2013.04.04.02.
  • [30] P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, and S. Kalogirou, “Sustainable development using renewable energy technology,” Renew. Energy, vol. 146, pp. 2430–2437, Feb. 2020, doi: 10.1016/j.renene.2019.08.094.
  • [31] L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrog. Energy, vol. 28, no. 3, pp. 267–284, Mar. 2003, doi: 10.1016/S0360-3199(02)00074-5.
  • [32] P. M. Falcone, M. Hiete, and A. Sapio, “Hydrogen economy and sustainable development goals: Review and policy insights,” Curr. Opin. Green Sustain. Chem., vol. 31, p. 100506, Oct. 2021, doi: 10.1016/j.cogsc.2021.100506.
  • [33] A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs,” Renew. Sustain. Energy Rev., vol. 9, no. 3, pp. 255–271, Jun. 2005, doi: 10.1016/j.rser.2004.05.003.
  • [34] A. Khalilnejad and G. H. Riahy, “A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer,” Energy Convers. Manag., vol. 80, pp. 398–406, Apr. 2014, doi: 10.1016/j.enconman.2014.01.040.
  • [35] C. Acar and I. Dincer, “Review and evaluation of hydrogen production options for better environment,” J. Clean. Prod., vol. 218, pp. 835–849, May 2019, doi: 10.1016/j.jclepro.2019.02.046.
  • [36] M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” Int. J. Hydrog. Energy, vol. 33, no. 15, pp. 4013–4029, Aug. 2008, doi: 10.1016/j.ijhydene.2008.05.047.
  • [37] H. Ishaq and I. Dincer, “Comparative assessment of renewable energy-based hydrogen production methods,” Renew. Sustain. Energy Rev., vol. 135, p. 110192, Jan. 2021, doi: 10.1016/j.rser.2020.110192.
  • [38] O. Bičáková and P. Straka, “Production of hydrogen from renewable resources and its effectiveness,” Int. J. Hydrog. Energy, vol. 37, no. 16, pp. 11563–11578, Aug. 2012, doi: 10.1016/j.ijhydene.2012.05.047.
  • [39] S. Singh et al., “Hydrogen: A sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev., vol. 51, pp. 623–633, Nov. 2015, doi: 10.1016/j.rser.2015.06.040.
  • [40] H. Ishaq, I. Dincer, and C. Crawford, “A review on hydrogen production and utilization: Challenges and opportunities,” Int. J. Hydrog. Energy, vol. 47, no. 62, pp. 26238–26264, Jul. 2022, doi: 10.1016/j.ijhydene.2021.11.149.
  • [41] M. Wang, G. Wang, Z. Sun, Y. Zhang, and D. Xu, “Review of renewable energy-based hydrogen production processes for sustainable energy innovation,” Glob. Energy Interconnect., vol. 2, no. 5, pp. 436–443, Oct. 2019, doi: 10.1016/j.gloei.2019.11.019.
  • [42] M. Yu, K. Wang, and H. Vredenburg, “Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen,” Int. J. Hydrog. Energy, vol. 46, no. 41, pp. 21261–21273, Jun. 2021, doi: 10.1016/j.ijhydene.2021.04.016.
  • [43] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renew. Sustain. Energy Rev., vol. 57, pp. 850–866, May 2016, doi: 10.1016/j.rser.2015.12.112.
  • [44] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, Jan. 2017, doi: 10.1016/j.rser.2016.09.044.
  • [45] S. Harichandan, S. K. Kar, R. Bansal, and S. K. Mishra, “Achieving sustainable development goals through adoption of hydrogen fuel cell vehicles in India: An empirical analysis,” Int. J. Hydrog. Energy, vol. 48, no. 12, pp. 4845–4859, Feb. 2023, doi: 10.1016/j.ijhydene.2022.11.024.
  • [46] L. S. F. Frowijn and W. G. J. H. M. van Sark, “Analysis of photon-driven solar-to-hydrogen production methods in the Netherlands,” Sustain. Energy Technol. Assess., vol. 48, p. 101631, Dec. 2021, doi: 10.1016/j.seta.2021.101631.
  • [47] M. Gopinath and R. Marimuthu, “A review on solar energy-based indirect water-splitting methods for hydrogen generation,” Int. J. Hydrog. Energy, vol. 47, no. 89, pp. 37742–37759, Nov. 2022, doi: 10.1016/j.ijhydene.2022.08.297.
  • [48] C. C. Agrafiotis, C. Pagkoura, S. Lorentzou, M. Kostoglou, and A. G. Konstandopoulos, “Hydrogen production in solar reactors,” Catal. Today, vol. 127, no. 1, pp. 265–277, Sep. 2007, doi: 10.1016/j.cattod.2007.06.039.
  • [49] S. E. Hosseini and M. A. Wahid, “Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy,” Int. J. Energy Res., vol. 44, no. 6, pp. 4110–4131, 2020, doi: 10.1002/er.4930.
  • [50] A. S. Joshi, I. Dincer, and B. V. Reddy, “Solar hydrogen production: A comparative performance assessment,” Int. J. Hydrog. Energy, vol. 36, no. 17, pp. 11246–11257, Aug. 2011, doi: 10.1016/j.ijhydene.2010.11.122.
  • [51] A. Khalilnejad, A. Abbaspour, and A. I. Sarwat, “Multi-level optimization approach for directly coupled photovoltaic-electrolyser system,” Int. J. Hydrog. Energy, vol. 41, no. 28, pp. 11884–11894, Jul. 2016, doi: 10.1016/j.ijhydene.2016.05.082.
  • [52] A. S. Joshi, I. Dincer, and B. V. Reddy, “Performance analysis of photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1884–1897, Oct. 2009, doi: 10.1016/j.rser.2009.01.009.
  • [53] M. Öztürk, A. Elbir, N. Özek, and A. K. Yakut, “Güneş Hidrojen Üretim Metotlarının İncelenmesi,” in 6th International Advanced Technologies Symposium (IATS’11), 2011, p. 18.
  • [54] M. ÖZTÜRK, “Evsel Uygulamalar için Birleşik Rüzgar-Güneş-Hidrojen Sisteminin Termodinamik Analizi,” El-Cezeri, vol. 3, no. 3.
  • [55] M. Ahmed and I. Dincer, “A review on photoelectrochemical hydrogen production systems: Challenges and future directions,” Int. J. Hydrog. Energy, vol. 44, no. 5, pp. 2474–2507, Jan. 2019, doi: 10.1016/j.ijhydene.2018.12.037.
  • [56] A. Kumtepe, “Fotoelektrokimyasal sistemler için ileri malzemeler geliştirilmesi: Üretim, karakterizasyon ve sistem entegrasyonu,” Master’s Thesis, TOBB ETÜ, 2022.
  • [57] E. K. Can, “Foto elektrokimyasal hidrojen üretimi uygulamarı için elektrot dizaynı ve performans ölçümü,” Master’s Thesis, TOBB University of Economics and Technology, Graduate School of Engineering …, 2017.
  • [58] J. Joy, J. Mathew, and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review,” Int. J. Hydrog. Energy, vol. 43, no. 10, pp. 4804–4817, Mar. 2018, doi: 10.1016/j.ijhydene.2018.01.099.
  • [59] S. Thanigaivel, S. Rajendran, T. K. A. Hoang, A. Ahmad, and R. Luque, “Photobiological effects of converting biomass into hydrogen – Challenges and prospects,” Bioresour. Technol., vol. 367, p. 128278, Jan. 2023, doi: 10.1016/j.biortech.2022.128278.
  • [60] A. Sharma and S. K. Arya, “Photobiological Production of Biohydrogen: Recent Advances and Strategy,” in Prospects of Renewable Bioprocessing in Future Energy Systems, A. A. Rastegari, A. N. Yadav, and A. Gupta, Eds., in Biofuel and Biorefinery Technologies. , Cham: Springer International Publishing, 2019, pp. 89–116. doi: 10.1007/978-3-030-14463-0_3.
  • [61] Y. Chen, “Global potential of algae-based photobiological hydrogen production,” Energy Environ. Sci., vol. 15, no. 7, pp. 2843–2857, Jul. 2022, doi: 10.1039/D2EE00342B.
  • [62] R. S. Poudyal et al., “10 - Hydrogen production using photobiological methods,” in Compendium of Hydrogen Energy, V. Subramani, A. Basile, and T. N. Veziroğlu, Eds., in Woodhead Publishing Series in Energy. , Oxford: Woodhead Publishing, 2015, pp. 289–317. doi: 10.1016/B978-1-78242-361-4.00010-8.
  • [63] J. Chen et al., “Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae,” Energy Environ. Sci., vol. 13, no. 7, pp. 2064–2068, Jul. 2020, doi: 10.1039/D0EE00993H.
  • [64] J. C. Restrepo, D. Luis Izidoro, A. Milena Lozano Násner, O. José Venturini, and E. Eduardo Silva Lora, “Techno-economical evaluation of renewable hydrogen production through concentrated solar energy,” Energy Convers. Manag., vol. 258, p. 115372, Apr. 2022, doi: 10.1016/j.enconman.2022.115372.
  • [65] J. H. Peterseim, S. White, A. Tadros, and U. Hellwig, “Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?,” Renew. Energy, vol. 57, pp. 520–532, Sep. 2013, doi: 10.1016/j.renene.2013.02.014.
  • [66] K. M. Powell, K. Rashid, K. Ellingwood, J. Tuttle, and B. D. Iverson, “Hybrid concentrated solar thermal power systems: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 215–237, Dec. 2017, doi: 10.1016/j.rser.2017.05.067.
  • [67] M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed, and G. Perkins, “A critical review on the development and challenges of concentrated solar power technologies,” Sustain. Energy Technol. Assess., vol. 47, p. 101434, Oct. 2021, doi: 10.1016/j.seta.2021.101434.
  • [68] H. I. Villafán-Vidales, C. A. Arancibia-Bulnes, D. Riveros-Rosas, H. Romero-Paredes, and C. A. Estrada, “An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities,” Renew. Sustain. Energy Rev., vol. 75, pp. 894–908, Aug. 2017, doi: 10.1016/j.rser.2016.11.070.
  • [69] A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications,” Prog. Energy Combust. Sci., vol. 35, no. 3, pp. 231–244, Jun. 2009, doi: 10.1016/j.pecs.2008.07.004.
  • [70] A. S. Joshi, I. Dincer, and B. V. Reddy, “Exergetic assessment of solar hydrogen production methods,” Int. J. Hydrog. Energy, vol. 35, no. 10, pp. 4901–4908, May 2010, doi: 10.1016/j.ijhydene.2009.09.067.
  • [71] Z. Ö. Özdemir and H. Mutlubaş, “ENERJİ TAŞIYICISI OLARAK HİDROJEN VE HİDROJEN ÜRETİM YÖNTEMLERİ”.
  • [72] T. L. Gibson and N. A. Kelly, “Optimization of solar powered hydrogen production using photovoltaic electrolysis devices,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 5931–5940, Nov. 2008, doi: 10.1016/j.ijhydene.2008.05.106.
  • [73] G. Peharz, F. Dimroth, and U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%,” Int. J. Hydrog. Energy, vol. 32, no. 15, pp. 3248–3252, Oct. 2007, doi: 10.1016/j.ijhydene.2007.04.036.
  • [74] S. Dahbi, R. Aboutni, A. Aziz, N. Benazzi, M. Elhafyani, and K. Kassmi, “Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller,” Int. J. Hydrog. Energy, vol. 41, no. 45, pp. 20858–20866, Dec. 2016, doi: 10.1016/j.ijhydene.2016.05.111.
  • [75] Y. Bicer, I. Dincer, and C. Zamfirescu, “Effects of various solar spectra on photovoltaic cell efficiency and photonic hydrogen production,” Int. J. Hydrog. Energy, vol. 41, no. 19, pp. 7935–7949, May 2016, doi: 10.1016/j.ijhydene.2015.11.184.
  • [76] M. Erden, M. Karakilcik, and I. Dincer, “Performance investigation of hydrogen production by the flat-plate collectors assisted by a solar pond,” Int. J. Hydrog. Energy, vol. 42, no. 4, pp. 2522–2529, Jan. 2017, doi: 10.1016/j.ijhydene.2016.04.116.
  • [77] Ö. Coşkun, “Tandem perovskit foto-elektrokimyasal güneş pilleri için elektron ve boşluk taşıyıcı tabakaların geliştirilmesi,” Master’s Thesis, TOBB ETÜ, 2022.
  • [78] D. Kim, D.-K. Lee, S. M. Kim, W. Park, and U. Sim, “Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites,” Materials, vol. 13, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/ma13010210.
  • [79] S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” Int. J. Hydrog. Energy, vol. 30, no. 5, pp. 459–470, Apr. 2005, doi: 10.1016/j.ijhydene.2004.04.015.
  • [80] A. Boudjemaa, S. Boumaza, M. Trari, R. Bouarab, and A. Bouguelia, “Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production,” Int. J. Hydrog. Energy, vol. 34, no. 10, pp. 4268–4274, May 2009, doi: 10.1016/j.ijhydene.2009.03.044.
  • [81] A. Alarawi, V. Ramalingam, H.-C. Fu, P. Varadhan, R. Yang, and J.-H. He, “Enhanced photoelectrochemical hydrogen production efficiency of MoS,” Opt. Express, vol. 27, no. 8, pp. A352–A363, Apr. 2019, doi: 10.1364/OE.27.00A352.
  • [82] M. Lucia Ghirardi, A. Dubini, J. Yu, and P.-C. Maness, “Photobiological hydrogen -producing systems,” Chem. Soc. Rev., vol. 38, no. 1, pp. 52–61, 2009, doi: 10.1039/B718939G.
  • [83] H. Sakurai, H. Masukawa, M. Kitashima, and K. Inoue, “Photobiological hydrogen production: Bioenergetics and challenges for its practical application,” J. Photochem. Photobiol. C Photochem. Rev., vol. 17, pp. 1–25, Dec. 2013, doi: 10.1016/j.jphotochemrev.2013.05.001.
  • [84] P. Wutthithien, P. Lindblad, and A. Incharoensakdi, “Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215,” J. Appl. Phycol., vol. 31, no. 6, pp. 3527–3536, Dec. 2019, doi: 10.1007/s10811-019-01881-y.
  • [85] J. Chen et al., “Chemical Flocculation-Based Green Algae Materials for Photobiological Hydrogen Production,” ACS Appl. Bio Mater., vol. 5, no. 2, pp. 897–903, Feb. 2022, doi: 10.1021/acsabm.1c01281.
  • [86] S. Meher Kotay and D. Das, “Biohydrogen as a renewable energy resource—Prospects and potentials,” Int. J. Hydrog. Energy, vol. 33, no. 1, pp. 258–263, Jan. 2008, doi: 10.1016/j.ijhydene.2007.07.031.
  • [87] G. Liu, Y. Sheng, J. W. Ager, M. Kraft, and R. Xu, “Research advances towards large-scale solar hydrogen production from water,” EnergyChem, vol. 1, no. 2, p. 100014, Sep. 2019, doi: 10.1016/j.enchem.2019.100014.
  • [88] M. H. Razu, F. Hossain, and M. Khan, “Advancement of Bio-hydrogen Production from Microalgae,” in Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, Md. A. Alam and Z. Wang, Eds., Singapore: Springer, 2019, pp. 423–462. doi: 10.1007/978-981-13-2264-8_17.
  • [89] B. Ge et al., “Evaluation of various sulfides for enhanced photobiological H2 production by a dual-species co-culture system of Chlamydomonas reinhardtii and Thiomonas intermedia,” Process Biochem., vol. 82, pp. 110–116, Jul. 2019, doi: 10.1016/j.procbio.2019.03.028.
  • [90] S. Koumi Ngoh and D. Njomo, “An overview of hydrogen gas production from solar energy,” Renew. Sustain. Energy Rev., vol. 16, no. 9, pp. 6782–6792, Dec. 2012, doi: 10.1016/j.rser.2012.07.027.
  • [91] X. Xu, Q. Zhou, and D. Yu, “The future of hydrogen energy: Bio-hydrogen production technology,” Int. J. Hydrog. Energy, vol. 47, no. 79, pp. 33677–33698, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.261.
  • [92] R. Kothari, D. P. Singh, V. V. Tyagi, and S. K. Tyagi, “Fermentative hydrogen production – An alternative clean energy source,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2337–2346, May 2012, doi: 10.1016/j.rser.2012.01.002.
  • [93] D. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 6046–6057, Nov. 2008, doi: 10.1016/j.ijhydene.2008.07.098.
  • [94] H. Yang et al., “Exploiting the operational flexibility of a concentrated solar power plant with hydrogen production,” Sol. Energy, vol. 247, pp. 158–170, Nov. 2022, doi: 10.1016/j.solener.2022.10.011.
  • [95] E. Bozoglan, A. Midilli, and A. Hepbasli, “Sustainable assessment of solar hydrogen production techniques,” Energy, vol. 46, no. 1, pp. 85–93, Oct. 2012, doi: 10.1016/j.energy.2012.03.029.
  • [96] Y. Fang, M. C. Paul, S. Varjani, X. Li, Y.-K. Park, and S. You, “Concentrated solar thermochemical gasification of biomass: Principles, applications, and development,” Renew. Sustain. Energy Rev., vol. 150, p. 111484, Oct. 2021, doi: 10.1016/j.rser.2021.111484.
  • [97] M. Temiz and I. Dincer, “Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems,” Energy, vol. 219, p. 119554, Mar. 2021, doi: 10.1016/j.energy.2020.119554.
  • [98] T. Peng et al., “Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology,” J. Energy Storage, vol. 60, p. 106489, Apr. 2023, doi: 10.1016/j.est.2022.106489.
  • [99] T. Amirthan and M. S. A. Perera, “The role of storage systems in hydrogen economy: A review,” J. Nat. Gas Sci. Eng., vol. 108, p. 104843, Dec. 2022, doi: 10.1016/j.jngse.2022.104843.
  • [100] A. Salehabadi, E. A. Dawi, D. A. Sabur, W. K. Al-Azzawi, and M. Salavati-Niasari, “Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview,” J. Energy Storage, vol. 61, p. 106722, May 2023, doi: 10.1016/j.est.2023.106722.
  • [101] T. Zhang, J. Uratani, Y. Huang, L. Xu, S. Griffiths, and Y. Ding, “Hydrogen liquefaction and storage: Recent progress and perspectives,” Renew. Sustain. Energy Rev., vol. 176, p. 113204, Apr. 2023, doi: 10.1016/j.rser.2023.113204.
  • [102] C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology - A review,” Carbon Resour. Convers., Mar. 2023, doi: 10.1016/j.crcon.2023.03.007.
  • [103] G. A. Russell-Parks, T. Gennett, and B. G. Trewyn, “Balancing molecular level influences of intermolecular frustrated Lewis pairs (FLP) for successful design of FLP catalysts for hydrogen storage applications,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.01.304.
  • [104] L. J. Huang, H. J. Lin, H. Wang, L. Z. Ouyang, and M. Zhu, “Amorphous alloys for hydrogen storage,” J. Alloys Compd., vol. 941, p. 168945, Apr. 2023, doi: 10.1016/j.jallcom.2023.168945.
  • [105] K. Edalati et al., “Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys,” J. Mater. Sci. Technol., vol. 146, pp. 221–239, May 2023, doi: 10.1016/j.jmst.2022.10.068.
  • [106] Z.-Y. Li et al., “Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications,” J. Mater. Sci. Technol., vol. 141, pp. 221–235, Apr. 2023, doi: 10.1016/j.jmst.2022.08.047.
  • [107] Z. Ding et al., “Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis,” J. Magnes. Alloys, vol. 10, no. 11, pp. 2946–2967, Nov. 2022, doi: 10.1016/j.jma.2022.09.028.
  • [108] I. P. Jain, C. Lal, and A. Jain, “Hydrogen storage in Mg: A most promising material,” Int. J. Hydrog. Energy, vol. 35, no. 10, pp. 5133–5144, May 2010, doi: 10.1016/j.ijhydene.2009.08.088.
  • [109] T. Sadhasivam, H.-T. Kim, S. Jung, S.-H. Roh, J.-H. Park, and H.-Y. Jung, “Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review,” Renew. Sustain. Energy Rev., vol. 72, pp. 523–534, May 2017, doi: 10.1016/j.rser.2017.01.107.
  • [110] G. R. de Almeida Neto, F. H. Matheus, C. A. Gonçalves Beatrice, D. R. Leiva, and L. A. Pessan, “Fundamentals and recent advances in polymer composites with hydride-forming metals for hydrogen storage applications,” Int. J. Hydrog. Energy, vol. 47, no. 80, pp. 34139–34164, Sep. 2022, doi: 10.1016/j.ijhydene.2022.08.004.
  • [111] R. Kumar Goyal and EswaramoorthyMuthusamy, “Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications,” Sustain. Energy Technol. Assess., vol. 56, p. 103078, Mar. 2023, doi: 10.1016/j.seta.2023.103078.
  • [112] Y. Sui et al., “Recent progress of nanotechnology in enhancing hydrogen storage performance of magnesium-based materials: A review,” Int. J. Hydrog. Energy, vol. 47, no. 71, pp. 30546–30566, Aug. 2022, doi: 10.1016/j.ijhydene.2022.06.310.
  • [113] M. S. Yahya, N. N. Sulaiman, N. S. Mustafa, F. A. Halim Yap, and M. Ismail, “Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7,” Int. J. Hydrog. Energy, vol. 43, no. 31, pp. 14532–14540, Aug. 2018, doi: 10.1016/j.ijhydene.2018.05.157.
  • [114] M. Ismail, “Effect of LaCl3 addition on the hydrogen storage properties of MgH2,” Energy, vol. 79, pp. 177–182, Jan. 2015, doi: 10.1016/j.energy.2014.11.001.
  • [115] M. Ismail, “Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2,” Int. J. Hydrog. Energy, vol. 46, no. 12, pp. 8621–8628, Feb. 2021, doi: 10.1016/j.ijhydene.2020.12.068.
  • [116] A. Z. Arsad et al., “Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions,” Int. J. Hydrog. Energy, vol. 48, no. 13, pp. 4960–4983, Feb. 2023, doi: 10.1016/j.ijhydene.2022.11.023.
  • [117] I. U. Hassan et al., “Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review,” J. Ind. Eng. Chem., vol. 121, pp. 1–14, May 2023, doi: 10.1016/j.jiec.2023.01.006.
  • [118] R. Gautam, J. K. Nayak, N. V. Ress, R. Steinberger-Wilckens, and U. K. Ghosh, “Bio-hydrogen production through microbial electrolysis cell: Structural components and influencing factors,” Chem. Eng. J., vol. 455, p. 140535, Jan. 2023, doi: 10.1016/j.cej.2022.140535.
  • [119] S. M. Jokar et al., “The recent areas of applicability of palladium based membrane technologies for hydrogen production from methane and natural gas: A review,” Int. J. Hydrog. Energy, vol. 48, no. 16, pp. 6451–6476, Feb. 2023, doi: 10.1016/j.ijhydene.2022.05.296.
  • [120] Z. Chen, W. Wei, L. Song, and B.-J. Ni, “Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production,” Sustain. Horiz., vol. 1, p. 100002, Jan. 2022, doi: 10.1016/j.horiz.2021.100002.
  • [121] P. R. Lanjekar, N. L. Panwar, and C. Agrawal, “A comprehensive review on hydrogen production through thermochemical conversion of biomass for energy security,” Bioresour. Technol. Rep., vol. 21, p. 101293, Feb. 2023, doi: 10.1016/j.biteb.2022.101293.
  • [122] D. D. Giri et al., “Sustainable production of algae-bacteria granular consortia based biological hydrogen: New insights,” Bioresour. Technol., vol. 352, p. 127036, May 2022, doi: 10.1016/j.biortech.2022.127036.
  • [123] A. Al-Ahmed, “Photocatalytic properties of graphitic carbon nitrides (g-C3N4) for sustainable green hydrogen production: Recent advancement,” Fuel, vol. 316, p. 123381, May 2022, doi: 10.1016/j.fuel.2022.123381.
  • [124] K. Chand and O. Paladino, “Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review,” Arab. J. Chem., vol. 16, no. 2, p. 104451, Feb. 2023, doi: 10.1016/j.arabjc.2022.104451.
  • [125] D. Li, J. Tu, Y. Lu, and B. Zhang, “Recent advances in hybrid water electrolysis for energy-saving hydrogen production,” Green Chem. Eng., vol. 4, no. 1, pp. 17–29, Mar. 2023, doi: 10.1016/j.gce.2022.11.001.
  • [126] S. Karishma, A. Saravanan, P. Senthil Kumar, and G. Rangasamy, “Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges,” Bioresour. Technol., vol. 366, p. 128187, Dec. 2022, doi: 10.1016/j.biortech.2022.128187.
  • [127] M. Liu et al., “Issues and opportunities facing hydrolytic hydrogen production materials,” Chem. Eng. J., vol. 461, p. 141918, Apr. 2023, doi: 10.1016/j.cej.2023.141918.
  • [128] G. Bilgiç, E. Bendeş, B. Öztürk, and S. Atasever, “Recent advances in artificial neural network research for modeling hydrogen production processes,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.02.002.
  • [129] J. A. Riera, R. M. Lima, and O. M. Knio, “A review of hydrogen production and supply chain modeling and optimization,” Int. J. Hydrog. Energy, Jan. 2023, doi: 10.1016/j.ijhydene.2022.12.242.
  • [130] F. Tahir, M. A. Saeed, and U. Ali, “Biomass energy perspective in Pakistan based on chemical looping gasification for hydrogen production and power generation,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.01.247.
  • [131] L. Wang, N. Zhang, T. Yue, H. Liu, J. Zhu, and X. Jia, “Three-axis coupled flight control law design for flying wing aircraft using eigenstructure assignment method,” Chin. J. Aeronaut., vol. 33, no. 10, pp. 2510–2526, Oct. 2020, doi: 10.1016/j.cja.2020.03.016.
  • [132] A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors,” Renew. Sustain. Energy Rev., vol. 106, pp. 31–40, May 2019, doi: 10.1016/j.rser.2019.02.022.
  • [133] “iata-agm-resolution-on-net-zero-carbon-emissions.pdf.” Accessed: Mar. 22, 2023. [Online]. Available: https://www.iata.org/contentassets/dcd25da635cd4c3697b5d0d8ae32e159/iata-agm-resolution-on-net-zero-carbon-emissions.pdf
  • [134] A. Goldmann et al., “A Study on Electrofuels in Aviation,” Energies, vol. 11, no. 2, Art. no. 2, Feb. 2018, doi: 10.3390/en11020392.
  • [135] T. Yusaf et al., “Sustainable Aviation—Hydrogen Is the Future,” Sustainability, vol. 14, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/su14010548.
  • [136] F. Musa Ardo et al., “A review in redressing challenges to produce sustainable hydrogen from microalgae for aviation industry,” Fuel, vol. 330, p. 125646, Dec. 2022, doi: 10.1016/j.fuel.2022.125646.
  • [137] C. Penke, C. Falter, and V. Batteiger, “Pathways and Environmental Assessment for the Introduction of Renewable Hydrogen into the Aviation Sector,” in Progress in Life Cycle Assessment 2019, S. Albrecht, M. Fischer, P. Leistner, and L. Schebek, Eds., in Sustainable Production, Life Cycle Engineering and Management. , Cham: Springer International Publishing, 2021, pp. 41–52. doi: 10.1007/978-3-030-50519-6_4.
  • [138] J. Huete and P. Pilidis, “Parametric study on tank integration for hydrogen civil aviation propulsion,” Int. J. Hydrog. Energy, vol. 46, no. 74, pp. 37049–37062, Oct. 2021, doi: 10.1016/j.ijhydene.2021.08.194.
  • [139] J. Hoelzen, D. Silberhorn, T. Zill, B. Bensmann, and R. Hanke-Rauschenbach, “Hydrogen-powered aviation and its reliance on green hydrogen infrastructure – Review and research gaps,” Int. J. Hydrog. Energy, vol. 47, no. 5, pp. 3108–3130, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.239.
  • [140] A. Bauen, N. Bitossi, L. German, A. Harris, and K. Leow, “Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation,” Johns. Matthey Technol. Rev., vol. 64, no. 3, pp. 263–278, 2020.
  • [141] S. Nicolay, S. Karpuk, Y. Liu, and A. Elham, “Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen,” Int. J. Hydrog. Energy, vol. 46, no. 64, pp. 32676–32694, Sep. 2021, doi: 10.1016/j.ijhydene.2021.07.127.
  • [142] J. Eissele et al., “Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040,” Aerospace, vol. 10, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/aerospace10030277.
  • [143] M. Otto, K. L. Chagoya, R. G. Blair, S. M. Hick, and J. S. Kapat, “Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation,” J. Energy Storage, vol. 55, p. 105714, Nov. 2022, doi: 10.1016/j.est.2022.105714.

Sürdürülebilir Enerjide Kritik Rolü Olan Hidrojen Üzerine Bir İnceleme

Year 2024, Volume: 9 Issue: 1, 63 - 90, 25.06.2024

Abstract

Sürdürülebilir ve yenilenebilir enerjiler geliştirmek dünyadaki enerji krizini çözebilir. Bu bağlamda enerji alanındaki odak noktalarından biri de düşük karbonlu teknolojilerin kullanımının yakın zamanda yaygınlaştırılmasıdır. Ayrıca yenilenemeyen enerji kaynaklarının tükenme sorunlarının ve iklim değişikliği gibi çevresel sorunların önlenmesi gerekmektedir. Enerji güvenliği, sürdürülebilir ve yenilenebilir enerji kaynakları kullanılarak geliştirilebilir. Sürdürülebilir enerjiye geçiş, özellikle havacılık gibi enerji tüketiminin yüksek olduğu sektörlerde hayati önem taşıyor. Hidrojen, muazzam bir potansiyele sahip olması ve bir enerji taşıyıcısı olarak kullanılabilmesi nedeniyle sürdürülebilir enerjiye geçişte kritik bir rol oynayabilir. Ancak üretilen hidrojenin saflık oranı ve hidrojenin depolanması problemleri, hidrojenin yaygınlaşmasına engel teşkil etmektedir. Hidrojenin saflığı, hidrojeni üretmek için kullanılan teknoloji ile ilgilidir. Bu bağlamda, bu çalışmada hidrojenin bir yenilebilir enerji kaynağı ile üretilmesine değinilmiştir. Ayrıca hidrojenin depolanma problemlerinin üstesinden gelinebilmesi için bir metal hidritin kullanılabilirliği tartışılmıştır. Literatürde sürdürülebilir kalkınma hedefleri ve hidrojen enerjisi ile ilgili birçok araştırma ve çalışma bulunmaktadır. Ancak, hidrojen enerjisi ile sürdürülebilir kalkınma hedefleri arasındaki ilişkiye yönelik çalışmalar ve araştırmalar eksiktir. Bu derleme, sürdürülebilir kalkınma hedefleri doğrultusunda hidrojen enerjisinin öneminden bahsetmektedir. Ayrıca sürdürülebilir enerji kaynakları, hidrojen üretim yöntemleri ve hidrojen depolanması ile ilgili literatürdeki çalışmalar derlenerek ileride yapılacak çalışmalara kaynak oluşturulması amaçlanmıştır.

References

  • [1] M. Aydin, “Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries,” Renew. Energy, vol. 136, pp. 599–606, Jun. 2019, doi: 10.1016/j.renene.2019.01.008.
  • [2] S. Firoz, “A review: Advantages and Disadvantages of Biodiesel,” vol. 04, no. 11.
  • [3] H. Ahmad, S. K. Kamarudin, L. J. Minggu, U. A. Hasran, S. Masdar, and W. R. Wan Daud, “Enhancing methanol oxidation with a TiO2-modified semiconductor as a photo-catalyst,” Int. J. Hydrog. Energy, vol. 42, no. 14, pp. 8986–8996, Apr. 2017, doi: 10.1016/j.ijhydene.2016.04.135.
  • [4] İ. İnan, İ. Akbulut, and E. Aslan, “ENERJİ SORUNUNUN ÇÖZÜMÜNDE YENİLENEMEZ VE YENİLENEBİLİR ENERJİ KAYNAKLARININ YERİ VE ÖNEMİ,” Türk Dünya. Araştırmaları, vol. 120, no. 237, Art. no. 237, Dec. 2018.
  • [5] W. H. Organization, “COP24 special report: health and climate change,” 2018.
  • [6] A. Darvish Falehi and M. Rafiee, “Maximum efficiency of wind energy using novel Dynamic Voltage Restorer for DFIG based Wind Turbine,” Energy Rep., vol. 4, pp. 308–322, Nov. 2018, doi: 10.1016/j.egyr.2018.01.006.
  • [7] S. Farhad, M. Saffar-Avval, and M. Younessi-Sinaki, “Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis,” Int. J. Energy Res., vol. 32, no. 1, pp. 1–11, 2008, doi: 10.1002/er.1319.
  • [8] A. G. Olabi and M. A. Abdelkareem, “Renewable energy and climate change,” Renew. Sustain. Energy Rev., vol. 158, p. 112111, Apr. 2022, doi: 10.1016/j.rser.2022.112111.
  • [9] A. Zoungrana and M. Çakmakci, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” Int. J. Energy Res., vol. 45, no. 3, pp. 3495–3522, 2021, doi: 10.1002/er.6062.
  • [10] M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, “Assessment of wind energy potential using wind energy conversion system,” J. Clean. Prod., vol. 216, pp. 346–360, Apr. 2019, doi: 10.1016/j.jclepro.2019.01.128.
  • [11] M. Mohsin, H. W. Kamran, M. Atif Nawaz, M. Sajjad Hussain, and A. S. Dahri, “Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies,” J. Environ. Manage., vol. 284, p. 111999, Apr. 2021, doi: 10.1016/j.jenvman.2021.111999.
  • [12] A. Ahmed, T. Ge, J. Peng, W.-C. Yan, B. T. Tee, and S. You, “Assessment of the renewable energy generation towards net-zero energy buildings: A review,” Energy Build., vol. 256, p. 111755, Feb. 2022, doi: 10.1016/j.enbuild.2021.111755.
  • [13] A. A. Kebede, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, “A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration,” Renew. Sustain. Energy Rev., vol. 159, p. 112213, May 2022, doi: 10.1016/j.rser.2022.112213.
  • [14] Z.-Y. Zhao, R.-D. Chang, and Y.-L. Chen, “What hinder the further development of wind power in China?—A socio-technical barrier study,” Energy Policy, vol. 88, pp. 465–476, Jan. 2016, doi: 10.1016/j.enpol.2015.11.004.
  • [15] A. Chehouri, R. Younes, A. Ilinca, and J. Perron, “Review of performance optimization techniques applied to wind turbines,” Appl. Energy, vol. 142, pp. 361–388, Mar. 2015, doi: 10.1016/j.apenergy.2014.12.043.
  • [16] Ş. Anatürk, “Yenilenebilir ve Yenilenemeyen Enerji Kaynakları Ile Ekonomik Büyüme Arasındaki Ilişki: Türkiye Örneğ,” PhD Thesis, Anadolu University (Turkey), 2021.
  • [17] J. J. Cartelle Barros, M. Lara Coira, M. P. de la Cruz López, and A. del Caño Gochi, “Comparative analysis of direct employment generated by renewable and non-renewable power plants,” Energy, vol. 139, pp. 542–554, Nov. 2017, doi: 10.1016/j.energy.2017.08.025.
  • [18] P. Sadorsky, “Wind energy for sustainable development: Driving factors and future outlook,” J. Clean. Prod., vol. 289, p. 125779, Mar. 2021, doi: 10.1016/j.jclepro.2020.125779.
  • [19] M. Han, J. Lao, Q. Yao, B. Zhang, and J. Meng, “Carbon inequality and economic development across the Belt and Road regions,” J. Environ. Manage., vol. 262, p. 110250, May 2020, doi: 10.1016/j.jenvman.2020.110250.
  • [20] A. Uihlein, S. Ehrenberger, and L. Schebek, “Utilisation options of renewable resources: a life cycle assessment of selected products,” J. Clean. Prod., vol. 16, no. 12, pp. 1306–1320, Aug. 2008, doi: 10.1016/j.jclepro.2007.06.009.
  • [21] R. Marks-Bielska, S. Bielski, K. Pik, and K. Kurowska, “The Importance of Renewable Energy Sources in Poland’s Energy Mix,” Energies, vol. 13, no. 18, Art. no. 18, Jan. 2020, doi: 10.3390/en13184624.
  • [22] I. Dincer, “Renewable energy and sustainable development: a crucial review,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157–175, Jun. 2000, doi: 10.1016/S1364-0321(99)00011-8.
  • [23] S. O. Oyedepo, “Towards achieving energy for sustainable development in Nigeria,” Renew. Sustain. Energy Rev., vol. 34, pp. 255–272, Jun. 2014, doi: 10.1016/j.rser.2014.03.019.
  • [24] M. Can and Z. Ahmed, “Towards sustainable development in the European Union countries: Does economic complexity affect renewable and non-renewable energy consumption?,” Sustain. Dev., vol. 31, no. 1, pp. 439–451, 2023, doi: 10.1002/sd.2402.
  • [25] J. Bei and C. Wang, “Renewable energy resources and sustainable development goals: Evidence based on green finance, clean energy and environmentally friendly investment,” Resour. Policy, vol. 80, p. 103194, Jan. 2023, doi: 10.1016/j.resourpol.2022.103194.
  • [26] G. E. Halkos and A. S. Tsirivis, “Electricity Production and Sustainable Development: The Role of Renewable Energy Sources and Specific Socioeconomic Factors,” Energies, vol. 16, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/en16020721.
  • [27] T. Güney, “Renewable energy, non-renewable energy and sustainable development,” Int. J. Sustain. Dev. World Ecol., vol. 26, no. 5, pp. 389–397, Jul. 2019, doi: 10.1080/13504509.2019.1595214.
  • [28] C. R. Kumar. J and M. A. Majid, “Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities,” Energy Sustain. Soc., vol. 10, no. 1, p. 2, Jan. 2020, doi: 10.1186/s13705-019-0232-1.
  • [29] M. Rezaei, “The Role of Renewable Energies in Sustainable Development: Case Study Iran,” Iran. J. Energy Environ., vol. 4, no. 4, Dec. 2013, doi: 10.5829/idosi.ijee.2013.04.04.02.
  • [30] P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, and S. Kalogirou, “Sustainable development using renewable energy technology,” Renew. Energy, vol. 146, pp. 2430–2437, Feb. 2020, doi: 10.1016/j.renene.2019.08.094.
  • [31] L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrog. Energy, vol. 28, no. 3, pp. 267–284, Mar. 2003, doi: 10.1016/S0360-3199(02)00074-5.
  • [32] P. M. Falcone, M. Hiete, and A. Sapio, “Hydrogen economy and sustainable development goals: Review and policy insights,” Curr. Opin. Green Sustain. Chem., vol. 31, p. 100506, Oct. 2021, doi: 10.1016/j.cogsc.2021.100506.
  • [33] A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs,” Renew. Sustain. Energy Rev., vol. 9, no. 3, pp. 255–271, Jun. 2005, doi: 10.1016/j.rser.2004.05.003.
  • [34] A. Khalilnejad and G. H. Riahy, “A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer,” Energy Convers. Manag., vol. 80, pp. 398–406, Apr. 2014, doi: 10.1016/j.enconman.2014.01.040.
  • [35] C. Acar and I. Dincer, “Review and evaluation of hydrogen production options for better environment,” J. Clean. Prod., vol. 218, pp. 835–849, May 2019, doi: 10.1016/j.jclepro.2019.02.046.
  • [36] M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” Int. J. Hydrog. Energy, vol. 33, no. 15, pp. 4013–4029, Aug. 2008, doi: 10.1016/j.ijhydene.2008.05.047.
  • [37] H. Ishaq and I. Dincer, “Comparative assessment of renewable energy-based hydrogen production methods,” Renew. Sustain. Energy Rev., vol. 135, p. 110192, Jan. 2021, doi: 10.1016/j.rser.2020.110192.
  • [38] O. Bičáková and P. Straka, “Production of hydrogen from renewable resources and its effectiveness,” Int. J. Hydrog. Energy, vol. 37, no. 16, pp. 11563–11578, Aug. 2012, doi: 10.1016/j.ijhydene.2012.05.047.
  • [39] S. Singh et al., “Hydrogen: A sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev., vol. 51, pp. 623–633, Nov. 2015, doi: 10.1016/j.rser.2015.06.040.
  • [40] H. Ishaq, I. Dincer, and C. Crawford, “A review on hydrogen production and utilization: Challenges and opportunities,” Int. J. Hydrog. Energy, vol. 47, no. 62, pp. 26238–26264, Jul. 2022, doi: 10.1016/j.ijhydene.2021.11.149.
  • [41] M. Wang, G. Wang, Z. Sun, Y. Zhang, and D. Xu, “Review of renewable energy-based hydrogen production processes for sustainable energy innovation,” Glob. Energy Interconnect., vol. 2, no. 5, pp. 436–443, Oct. 2019, doi: 10.1016/j.gloei.2019.11.019.
  • [42] M. Yu, K. Wang, and H. Vredenburg, “Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen,” Int. J. Hydrog. Energy, vol. 46, no. 41, pp. 21261–21273, Jun. 2021, doi: 10.1016/j.ijhydene.2021.04.016.
  • [43] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renew. Sustain. Energy Rev., vol. 57, pp. 850–866, May 2016, doi: 10.1016/j.rser.2015.12.112.
  • [44] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, Jan. 2017, doi: 10.1016/j.rser.2016.09.044.
  • [45] S. Harichandan, S. K. Kar, R. Bansal, and S. K. Mishra, “Achieving sustainable development goals through adoption of hydrogen fuel cell vehicles in India: An empirical analysis,” Int. J. Hydrog. Energy, vol. 48, no. 12, pp. 4845–4859, Feb. 2023, doi: 10.1016/j.ijhydene.2022.11.024.
  • [46] L. S. F. Frowijn and W. G. J. H. M. van Sark, “Analysis of photon-driven solar-to-hydrogen production methods in the Netherlands,” Sustain. Energy Technol. Assess., vol. 48, p. 101631, Dec. 2021, doi: 10.1016/j.seta.2021.101631.
  • [47] M. Gopinath and R. Marimuthu, “A review on solar energy-based indirect water-splitting methods for hydrogen generation,” Int. J. Hydrog. Energy, vol. 47, no. 89, pp. 37742–37759, Nov. 2022, doi: 10.1016/j.ijhydene.2022.08.297.
  • [48] C. C. Agrafiotis, C. Pagkoura, S. Lorentzou, M. Kostoglou, and A. G. Konstandopoulos, “Hydrogen production in solar reactors,” Catal. Today, vol. 127, no. 1, pp. 265–277, Sep. 2007, doi: 10.1016/j.cattod.2007.06.039.
  • [49] S. E. Hosseini and M. A. Wahid, “Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy,” Int. J. Energy Res., vol. 44, no. 6, pp. 4110–4131, 2020, doi: 10.1002/er.4930.
  • [50] A. S. Joshi, I. Dincer, and B. V. Reddy, “Solar hydrogen production: A comparative performance assessment,” Int. J. Hydrog. Energy, vol. 36, no. 17, pp. 11246–11257, Aug. 2011, doi: 10.1016/j.ijhydene.2010.11.122.
  • [51] A. Khalilnejad, A. Abbaspour, and A. I. Sarwat, “Multi-level optimization approach for directly coupled photovoltaic-electrolyser system,” Int. J. Hydrog. Energy, vol. 41, no. 28, pp. 11884–11894, Jul. 2016, doi: 10.1016/j.ijhydene.2016.05.082.
  • [52] A. S. Joshi, I. Dincer, and B. V. Reddy, “Performance analysis of photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1884–1897, Oct. 2009, doi: 10.1016/j.rser.2009.01.009.
  • [53] M. Öztürk, A. Elbir, N. Özek, and A. K. Yakut, “Güneş Hidrojen Üretim Metotlarının İncelenmesi,” in 6th International Advanced Technologies Symposium (IATS’11), 2011, p. 18.
  • [54] M. ÖZTÜRK, “Evsel Uygulamalar için Birleşik Rüzgar-Güneş-Hidrojen Sisteminin Termodinamik Analizi,” El-Cezeri, vol. 3, no. 3.
  • [55] M. Ahmed and I. Dincer, “A review on photoelectrochemical hydrogen production systems: Challenges and future directions,” Int. J. Hydrog. Energy, vol. 44, no. 5, pp. 2474–2507, Jan. 2019, doi: 10.1016/j.ijhydene.2018.12.037.
  • [56] A. Kumtepe, “Fotoelektrokimyasal sistemler için ileri malzemeler geliştirilmesi: Üretim, karakterizasyon ve sistem entegrasyonu,” Master’s Thesis, TOBB ETÜ, 2022.
  • [57] E. K. Can, “Foto elektrokimyasal hidrojen üretimi uygulamarı için elektrot dizaynı ve performans ölçümü,” Master’s Thesis, TOBB University of Economics and Technology, Graduate School of Engineering …, 2017.
  • [58] J. Joy, J. Mathew, and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review,” Int. J. Hydrog. Energy, vol. 43, no. 10, pp. 4804–4817, Mar. 2018, doi: 10.1016/j.ijhydene.2018.01.099.
  • [59] S. Thanigaivel, S. Rajendran, T. K. A. Hoang, A. Ahmad, and R. Luque, “Photobiological effects of converting biomass into hydrogen – Challenges and prospects,” Bioresour. Technol., vol. 367, p. 128278, Jan. 2023, doi: 10.1016/j.biortech.2022.128278.
  • [60] A. Sharma and S. K. Arya, “Photobiological Production of Biohydrogen: Recent Advances and Strategy,” in Prospects of Renewable Bioprocessing in Future Energy Systems, A. A. Rastegari, A. N. Yadav, and A. Gupta, Eds., in Biofuel and Biorefinery Technologies. , Cham: Springer International Publishing, 2019, pp. 89–116. doi: 10.1007/978-3-030-14463-0_3.
  • [61] Y. Chen, “Global potential of algae-based photobiological hydrogen production,” Energy Environ. Sci., vol. 15, no. 7, pp. 2843–2857, Jul. 2022, doi: 10.1039/D2EE00342B.
  • [62] R. S. Poudyal et al., “10 - Hydrogen production using photobiological methods,” in Compendium of Hydrogen Energy, V. Subramani, A. Basile, and T. N. Veziroğlu, Eds., in Woodhead Publishing Series in Energy. , Oxford: Woodhead Publishing, 2015, pp. 289–317. doi: 10.1016/B978-1-78242-361-4.00010-8.
  • [63] J. Chen et al., “Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae,” Energy Environ. Sci., vol. 13, no. 7, pp. 2064–2068, Jul. 2020, doi: 10.1039/D0EE00993H.
  • [64] J. C. Restrepo, D. Luis Izidoro, A. Milena Lozano Násner, O. José Venturini, and E. Eduardo Silva Lora, “Techno-economical evaluation of renewable hydrogen production through concentrated solar energy,” Energy Convers. Manag., vol. 258, p. 115372, Apr. 2022, doi: 10.1016/j.enconman.2022.115372.
  • [65] J. H. Peterseim, S. White, A. Tadros, and U. Hellwig, “Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?,” Renew. Energy, vol. 57, pp. 520–532, Sep. 2013, doi: 10.1016/j.renene.2013.02.014.
  • [66] K. M. Powell, K. Rashid, K. Ellingwood, J. Tuttle, and B. D. Iverson, “Hybrid concentrated solar thermal power systems: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 215–237, Dec. 2017, doi: 10.1016/j.rser.2017.05.067.
  • [67] M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed, and G. Perkins, “A critical review on the development and challenges of concentrated solar power technologies,” Sustain. Energy Technol. Assess., vol. 47, p. 101434, Oct. 2021, doi: 10.1016/j.seta.2021.101434.
  • [68] H. I. Villafán-Vidales, C. A. Arancibia-Bulnes, D. Riveros-Rosas, H. Romero-Paredes, and C. A. Estrada, “An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities,” Renew. Sustain. Energy Rev., vol. 75, pp. 894–908, Aug. 2017, doi: 10.1016/j.rser.2016.11.070.
  • [69] A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications,” Prog. Energy Combust. Sci., vol. 35, no. 3, pp. 231–244, Jun. 2009, doi: 10.1016/j.pecs.2008.07.004.
  • [70] A. S. Joshi, I. Dincer, and B. V. Reddy, “Exergetic assessment of solar hydrogen production methods,” Int. J. Hydrog. Energy, vol. 35, no. 10, pp. 4901–4908, May 2010, doi: 10.1016/j.ijhydene.2009.09.067.
  • [71] Z. Ö. Özdemir and H. Mutlubaş, “ENERJİ TAŞIYICISI OLARAK HİDROJEN VE HİDROJEN ÜRETİM YÖNTEMLERİ”.
  • [72] T. L. Gibson and N. A. Kelly, “Optimization of solar powered hydrogen production using photovoltaic electrolysis devices,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 5931–5940, Nov. 2008, doi: 10.1016/j.ijhydene.2008.05.106.
  • [73] G. Peharz, F. Dimroth, and U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%,” Int. J. Hydrog. Energy, vol. 32, no. 15, pp. 3248–3252, Oct. 2007, doi: 10.1016/j.ijhydene.2007.04.036.
  • [74] S. Dahbi, R. Aboutni, A. Aziz, N. Benazzi, M. Elhafyani, and K. Kassmi, “Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller,” Int. J. Hydrog. Energy, vol. 41, no. 45, pp. 20858–20866, Dec. 2016, doi: 10.1016/j.ijhydene.2016.05.111.
  • [75] Y. Bicer, I. Dincer, and C. Zamfirescu, “Effects of various solar spectra on photovoltaic cell efficiency and photonic hydrogen production,” Int. J. Hydrog. Energy, vol. 41, no. 19, pp. 7935–7949, May 2016, doi: 10.1016/j.ijhydene.2015.11.184.
  • [76] M. Erden, M. Karakilcik, and I. Dincer, “Performance investigation of hydrogen production by the flat-plate collectors assisted by a solar pond,” Int. J. Hydrog. Energy, vol. 42, no. 4, pp. 2522–2529, Jan. 2017, doi: 10.1016/j.ijhydene.2016.04.116.
  • [77] Ö. Coşkun, “Tandem perovskit foto-elektrokimyasal güneş pilleri için elektron ve boşluk taşıyıcı tabakaların geliştirilmesi,” Master’s Thesis, TOBB ETÜ, 2022.
  • [78] D. Kim, D.-K. Lee, S. M. Kim, W. Park, and U. Sim, “Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites,” Materials, vol. 13, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/ma13010210.
  • [79] S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” Int. J. Hydrog. Energy, vol. 30, no. 5, pp. 459–470, Apr. 2005, doi: 10.1016/j.ijhydene.2004.04.015.
  • [80] A. Boudjemaa, S. Boumaza, M. Trari, R. Bouarab, and A. Bouguelia, “Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production,” Int. J. Hydrog. Energy, vol. 34, no. 10, pp. 4268–4274, May 2009, doi: 10.1016/j.ijhydene.2009.03.044.
  • [81] A. Alarawi, V. Ramalingam, H.-C. Fu, P. Varadhan, R. Yang, and J.-H. He, “Enhanced photoelectrochemical hydrogen production efficiency of MoS,” Opt. Express, vol. 27, no. 8, pp. A352–A363, Apr. 2019, doi: 10.1364/OE.27.00A352.
  • [82] M. Lucia Ghirardi, A. Dubini, J. Yu, and P.-C. Maness, “Photobiological hydrogen -producing systems,” Chem. Soc. Rev., vol. 38, no. 1, pp. 52–61, 2009, doi: 10.1039/B718939G.
  • [83] H. Sakurai, H. Masukawa, M. Kitashima, and K. Inoue, “Photobiological hydrogen production: Bioenergetics and challenges for its practical application,” J. Photochem. Photobiol. C Photochem. Rev., vol. 17, pp. 1–25, Dec. 2013, doi: 10.1016/j.jphotochemrev.2013.05.001.
  • [84] P. Wutthithien, P. Lindblad, and A. Incharoensakdi, “Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215,” J. Appl. Phycol., vol. 31, no. 6, pp. 3527–3536, Dec. 2019, doi: 10.1007/s10811-019-01881-y.
  • [85] J. Chen et al., “Chemical Flocculation-Based Green Algae Materials for Photobiological Hydrogen Production,” ACS Appl. Bio Mater., vol. 5, no. 2, pp. 897–903, Feb. 2022, doi: 10.1021/acsabm.1c01281.
  • [86] S. Meher Kotay and D. Das, “Biohydrogen as a renewable energy resource—Prospects and potentials,” Int. J. Hydrog. Energy, vol. 33, no. 1, pp. 258–263, Jan. 2008, doi: 10.1016/j.ijhydene.2007.07.031.
  • [87] G. Liu, Y. Sheng, J. W. Ager, M. Kraft, and R. Xu, “Research advances towards large-scale solar hydrogen production from water,” EnergyChem, vol. 1, no. 2, p. 100014, Sep. 2019, doi: 10.1016/j.enchem.2019.100014.
  • [88] M. H. Razu, F. Hossain, and M. Khan, “Advancement of Bio-hydrogen Production from Microalgae,” in Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, Md. A. Alam and Z. Wang, Eds., Singapore: Springer, 2019, pp. 423–462. doi: 10.1007/978-981-13-2264-8_17.
  • [89] B. Ge et al., “Evaluation of various sulfides for enhanced photobiological H2 production by a dual-species co-culture system of Chlamydomonas reinhardtii and Thiomonas intermedia,” Process Biochem., vol. 82, pp. 110–116, Jul. 2019, doi: 10.1016/j.procbio.2019.03.028.
  • [90] S. Koumi Ngoh and D. Njomo, “An overview of hydrogen gas production from solar energy,” Renew. Sustain. Energy Rev., vol. 16, no. 9, pp. 6782–6792, Dec. 2012, doi: 10.1016/j.rser.2012.07.027.
  • [91] X. Xu, Q. Zhou, and D. Yu, “The future of hydrogen energy: Bio-hydrogen production technology,” Int. J. Hydrog. Energy, vol. 47, no. 79, pp. 33677–33698, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.261.
  • [92] R. Kothari, D. P. Singh, V. V. Tyagi, and S. K. Tyagi, “Fermentative hydrogen production – An alternative clean energy source,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2337–2346, May 2012, doi: 10.1016/j.rser.2012.01.002.
  • [93] D. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 6046–6057, Nov. 2008, doi: 10.1016/j.ijhydene.2008.07.098.
  • [94] H. Yang et al., “Exploiting the operational flexibility of a concentrated solar power plant with hydrogen production,” Sol. Energy, vol. 247, pp. 158–170, Nov. 2022, doi: 10.1016/j.solener.2022.10.011.
  • [95] E. Bozoglan, A. Midilli, and A. Hepbasli, “Sustainable assessment of solar hydrogen production techniques,” Energy, vol. 46, no. 1, pp. 85–93, Oct. 2012, doi: 10.1016/j.energy.2012.03.029.
  • [96] Y. Fang, M. C. Paul, S. Varjani, X. Li, Y.-K. Park, and S. You, “Concentrated solar thermochemical gasification of biomass: Principles, applications, and development,” Renew. Sustain. Energy Rev., vol. 150, p. 111484, Oct. 2021, doi: 10.1016/j.rser.2021.111484.
  • [97] M. Temiz and I. Dincer, “Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems,” Energy, vol. 219, p. 119554, Mar. 2021, doi: 10.1016/j.energy.2020.119554.
  • [98] T. Peng et al., “Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology,” J. Energy Storage, vol. 60, p. 106489, Apr. 2023, doi: 10.1016/j.est.2022.106489.
  • [99] T. Amirthan and M. S. A. Perera, “The role of storage systems in hydrogen economy: A review,” J. Nat. Gas Sci. Eng., vol. 108, p. 104843, Dec. 2022, doi: 10.1016/j.jngse.2022.104843.
  • [100] A. Salehabadi, E. A. Dawi, D. A. Sabur, W. K. Al-Azzawi, and M. Salavati-Niasari, “Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview,” J. Energy Storage, vol. 61, p. 106722, May 2023, doi: 10.1016/j.est.2023.106722.
  • [101] T. Zhang, J. Uratani, Y. Huang, L. Xu, S. Griffiths, and Y. Ding, “Hydrogen liquefaction and storage: Recent progress and perspectives,” Renew. Sustain. Energy Rev., vol. 176, p. 113204, Apr. 2023, doi: 10.1016/j.rser.2023.113204.
  • [102] C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology - A review,” Carbon Resour. Convers., Mar. 2023, doi: 10.1016/j.crcon.2023.03.007.
  • [103] G. A. Russell-Parks, T. Gennett, and B. G. Trewyn, “Balancing molecular level influences of intermolecular frustrated Lewis pairs (FLP) for successful design of FLP catalysts for hydrogen storage applications,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.01.304.
  • [104] L. J. Huang, H. J. Lin, H. Wang, L. Z. Ouyang, and M. Zhu, “Amorphous alloys for hydrogen storage,” J. Alloys Compd., vol. 941, p. 168945, Apr. 2023, doi: 10.1016/j.jallcom.2023.168945.
  • [105] K. Edalati et al., “Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys,” J. Mater. Sci. Technol., vol. 146, pp. 221–239, May 2023, doi: 10.1016/j.jmst.2022.10.068.
  • [106] Z.-Y. Li et al., “Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications,” J. Mater. Sci. Technol., vol. 141, pp. 221–235, Apr. 2023, doi: 10.1016/j.jmst.2022.08.047.
  • [107] Z. Ding et al., “Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis,” J. Magnes. Alloys, vol. 10, no. 11, pp. 2946–2967, Nov. 2022, doi: 10.1016/j.jma.2022.09.028.
  • [108] I. P. Jain, C. Lal, and A. Jain, “Hydrogen storage in Mg: A most promising material,” Int. J. Hydrog. Energy, vol. 35, no. 10, pp. 5133–5144, May 2010, doi: 10.1016/j.ijhydene.2009.08.088.
  • [109] T. Sadhasivam, H.-T. Kim, S. Jung, S.-H. Roh, J.-H. Park, and H.-Y. Jung, “Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review,” Renew. Sustain. Energy Rev., vol. 72, pp. 523–534, May 2017, doi: 10.1016/j.rser.2017.01.107.
  • [110] G. R. de Almeida Neto, F. H. Matheus, C. A. Gonçalves Beatrice, D. R. Leiva, and L. A. Pessan, “Fundamentals and recent advances in polymer composites with hydride-forming metals for hydrogen storage applications,” Int. J. Hydrog. Energy, vol. 47, no. 80, pp. 34139–34164, Sep. 2022, doi: 10.1016/j.ijhydene.2022.08.004.
  • [111] R. Kumar Goyal and EswaramoorthyMuthusamy, “Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications,” Sustain. Energy Technol. Assess., vol. 56, p. 103078, Mar. 2023, doi: 10.1016/j.seta.2023.103078.
  • [112] Y. Sui et al., “Recent progress of nanotechnology in enhancing hydrogen storage performance of magnesium-based materials: A review,” Int. J. Hydrog. Energy, vol. 47, no. 71, pp. 30546–30566, Aug. 2022, doi: 10.1016/j.ijhydene.2022.06.310.
  • [113] M. S. Yahya, N. N. Sulaiman, N. S. Mustafa, F. A. Halim Yap, and M. Ismail, “Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7,” Int. J. Hydrog. Energy, vol. 43, no. 31, pp. 14532–14540, Aug. 2018, doi: 10.1016/j.ijhydene.2018.05.157.
  • [114] M. Ismail, “Effect of LaCl3 addition on the hydrogen storage properties of MgH2,” Energy, vol. 79, pp. 177–182, Jan. 2015, doi: 10.1016/j.energy.2014.11.001.
  • [115] M. Ismail, “Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2,” Int. J. Hydrog. Energy, vol. 46, no. 12, pp. 8621–8628, Feb. 2021, doi: 10.1016/j.ijhydene.2020.12.068.
  • [116] A. Z. Arsad et al., “Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions,” Int. J. Hydrog. Energy, vol. 48, no. 13, pp. 4960–4983, Feb. 2023, doi: 10.1016/j.ijhydene.2022.11.023.
  • [117] I. U. Hassan et al., “Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review,” J. Ind. Eng. Chem., vol. 121, pp. 1–14, May 2023, doi: 10.1016/j.jiec.2023.01.006.
  • [118] R. Gautam, J. K. Nayak, N. V. Ress, R. Steinberger-Wilckens, and U. K. Ghosh, “Bio-hydrogen production through microbial electrolysis cell: Structural components and influencing factors,” Chem. Eng. J., vol. 455, p. 140535, Jan. 2023, doi: 10.1016/j.cej.2022.140535.
  • [119] S. M. Jokar et al., “The recent areas of applicability of palladium based membrane technologies for hydrogen production from methane and natural gas: A review,” Int. J. Hydrog. Energy, vol. 48, no. 16, pp. 6451–6476, Feb. 2023, doi: 10.1016/j.ijhydene.2022.05.296.
  • [120] Z. Chen, W. Wei, L. Song, and B.-J. Ni, “Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production,” Sustain. Horiz., vol. 1, p. 100002, Jan. 2022, doi: 10.1016/j.horiz.2021.100002.
  • [121] P. R. Lanjekar, N. L. Panwar, and C. Agrawal, “A comprehensive review on hydrogen production through thermochemical conversion of biomass for energy security,” Bioresour. Technol. Rep., vol. 21, p. 101293, Feb. 2023, doi: 10.1016/j.biteb.2022.101293.
  • [122] D. D. Giri et al., “Sustainable production of algae-bacteria granular consortia based biological hydrogen: New insights,” Bioresour. Technol., vol. 352, p. 127036, May 2022, doi: 10.1016/j.biortech.2022.127036.
  • [123] A. Al-Ahmed, “Photocatalytic properties of graphitic carbon nitrides (g-C3N4) for sustainable green hydrogen production: Recent advancement,” Fuel, vol. 316, p. 123381, May 2022, doi: 10.1016/j.fuel.2022.123381.
  • [124] K. Chand and O. Paladino, “Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review,” Arab. J. Chem., vol. 16, no. 2, p. 104451, Feb. 2023, doi: 10.1016/j.arabjc.2022.104451.
  • [125] D. Li, J. Tu, Y. Lu, and B. Zhang, “Recent advances in hybrid water electrolysis for energy-saving hydrogen production,” Green Chem. Eng., vol. 4, no. 1, pp. 17–29, Mar. 2023, doi: 10.1016/j.gce.2022.11.001.
  • [126] S. Karishma, A. Saravanan, P. Senthil Kumar, and G. Rangasamy, “Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges,” Bioresour. Technol., vol. 366, p. 128187, Dec. 2022, doi: 10.1016/j.biortech.2022.128187.
  • [127] M. Liu et al., “Issues and opportunities facing hydrolytic hydrogen production materials,” Chem. Eng. J., vol. 461, p. 141918, Apr. 2023, doi: 10.1016/j.cej.2023.141918.
  • [128] G. Bilgiç, E. Bendeş, B. Öztürk, and S. Atasever, “Recent advances in artificial neural network research for modeling hydrogen production processes,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.02.002.
  • [129] J. A. Riera, R. M. Lima, and O. M. Knio, “A review of hydrogen production and supply chain modeling and optimization,” Int. J. Hydrog. Energy, Jan. 2023, doi: 10.1016/j.ijhydene.2022.12.242.
  • [130] F. Tahir, M. A. Saeed, and U. Ali, “Biomass energy perspective in Pakistan based on chemical looping gasification for hydrogen production and power generation,” Int. J. Hydrog. Energy, Feb. 2023, doi: 10.1016/j.ijhydene.2023.01.247.
  • [131] L. Wang, N. Zhang, T. Yue, H. Liu, J. Zhu, and X. Jia, “Three-axis coupled flight control law design for flying wing aircraft using eigenstructure assignment method,” Chin. J. Aeronaut., vol. 33, no. 10, pp. 2510–2526, Oct. 2020, doi: 10.1016/j.cja.2020.03.016.
  • [132] A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors,” Renew. Sustain. Energy Rev., vol. 106, pp. 31–40, May 2019, doi: 10.1016/j.rser.2019.02.022.
  • [133] “iata-agm-resolution-on-net-zero-carbon-emissions.pdf.” Accessed: Mar. 22, 2023. [Online]. Available: https://www.iata.org/contentassets/dcd25da635cd4c3697b5d0d8ae32e159/iata-agm-resolution-on-net-zero-carbon-emissions.pdf
  • [134] A. Goldmann et al., “A Study on Electrofuels in Aviation,” Energies, vol. 11, no. 2, Art. no. 2, Feb. 2018, doi: 10.3390/en11020392.
  • [135] T. Yusaf et al., “Sustainable Aviation—Hydrogen Is the Future,” Sustainability, vol. 14, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/su14010548.
  • [136] F. Musa Ardo et al., “A review in redressing challenges to produce sustainable hydrogen from microalgae for aviation industry,” Fuel, vol. 330, p. 125646, Dec. 2022, doi: 10.1016/j.fuel.2022.125646.
  • [137] C. Penke, C. Falter, and V. Batteiger, “Pathways and Environmental Assessment for the Introduction of Renewable Hydrogen into the Aviation Sector,” in Progress in Life Cycle Assessment 2019, S. Albrecht, M. Fischer, P. Leistner, and L. Schebek, Eds., in Sustainable Production, Life Cycle Engineering and Management. , Cham: Springer International Publishing, 2021, pp. 41–52. doi: 10.1007/978-3-030-50519-6_4.
  • [138] J. Huete and P. Pilidis, “Parametric study on tank integration for hydrogen civil aviation propulsion,” Int. J. Hydrog. Energy, vol. 46, no. 74, pp. 37049–37062, Oct. 2021, doi: 10.1016/j.ijhydene.2021.08.194.
  • [139] J. Hoelzen, D. Silberhorn, T. Zill, B. Bensmann, and R. Hanke-Rauschenbach, “Hydrogen-powered aviation and its reliance on green hydrogen infrastructure – Review and research gaps,” Int. J. Hydrog. Energy, vol. 47, no. 5, pp. 3108–3130, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.239.
  • [140] A. Bauen, N. Bitossi, L. German, A. Harris, and K. Leow, “Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation,” Johns. Matthey Technol. Rev., vol. 64, no. 3, pp. 263–278, 2020.
  • [141] S. Nicolay, S. Karpuk, Y. Liu, and A. Elham, “Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen,” Int. J. Hydrog. Energy, vol. 46, no. 64, pp. 32676–32694, Sep. 2021, doi: 10.1016/j.ijhydene.2021.07.127.
  • [142] J. Eissele et al., “Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040,” Aerospace, vol. 10, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/aerospace10030277.
  • [143] M. Otto, K. L. Chagoya, R. G. Blair, S. M. Hick, and J. S. Kapat, “Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation,” J. Energy Storage, vol. 55, p. 105714, Nov. 2022, doi: 10.1016/j.est.2022.105714.
There are 143 citations in total.

Details

Primary Language English
Subjects Renewable Energy Resources
Journal Section articles
Authors

Berces Kurt

Publication Date June 25, 2024
Submission Date May 10, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

IEEE B. Kurt, “A Review on Hydrogen with a Critical Role in Sustainable Energy”, Yekarum, vol. 9, no. 1, pp. 63–90, 2024.