Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 5 Sayı: 1, 16 - 21, 30.01.2024

Öz

Kaynakça

  • 1.Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17 Suppl 4(Suppl 4):iv1-iv62.doi: https://doi.org/10.1093/neuonc/nov189
  • 2. Tas ZA, Kulahci O. Histopathological Analysis of Central Nervous System Metastases: Six Years of Data From a Tertiary Center. Cureus. 2022;14(2):e22151.doi: https://doi. org/10.7759/cureus.22151
  • 3. Hernandez-Hernandez A, Reyes-Moreno I, Gutierrez-Aceves A, Guerrero-Juarez V, Santos-Zambrano J, Lopez-Martinez M, et al. Primary Tumors of the Central Nervous System. Clinical Experience at a Third Level Center. Rev Invest Clin. 2018;70(4):177-83.doi: https://doi.org/10.24875/RIC.18002399
  • 4. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1-v75.doi: https://doi.org/10.1093/neuonc/now207
  • 5. Hill CI, Nixon CS, Ruehmeier JL, Wolf LM. Brain Tumors. Physical Therapy. 2002;82(5):496-502.doi: https://doi.org/10.1093/ptj/82.5.496
  • 6. Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83(5):708-14. doi: https://doi.org/10.1016/j.wneu.2015.01.014
  • 7. Pehlivanlı A, Bölükdemir MH. Investigating the effects of biomaterials on proton Bragg peak and secondary neutron production by the Monte Carlo method in the slab head phantom. Applied Radiation and Isotopes. 2022;180:110060. doi: https:// doi.org/https://doi.org/10.1016/j.apradiso.2021.110060
  • 8. Soydemir GP, Bilici N, Tiken EE, Balkanay AY, Sisman AF, Karacetin D. Hippocampal sparing for brain tumor radiotherapy: A retrospective study comparing intensity-modulated radiotherapy and volumetric-modulated arc therapy. J Cancer Res Ther. 2021;17(1):99-105.doi: https://doi.org/10.4103/jcrt.JCRT_32_19
  • 9. Das IJ, Cheng CW, Mitra RK, Kassaee A, Tochner Z, Solin LJJMp. Transmission and dose perturbations with high‐materials in clinical electron beams: Transmission and dose perturbations. 2004;31(12):3213-21.
  • 10. Arnfield MR, Otto K, Aroumougame VR, Alkins RD. The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy. Med Phys. 2005;32(1):12-8.doi: https://doi.org/10.1118/1.1829246
  • 11. Andrew Katsifis G, McKenzie DR, Hill R, Connor MO, Milross C, Suchowerska N. Radiation dose perturbation at the tissue interface with PEEK and Titanium bone implants: Monte Carlo simulation, treatment planning and film dosimetry. Radiation Physics and Chemistry. 2022;199:110398. doi: https://doi.org/https://doi.org/10.1016/j.radphyschem.2022.110398
  • 12. Meryem Cansu Ş and Kaan M. Evaluation of X-Ray Shielding Ability of Tungsten Rubber: A GAMOS Monte Carlo Study. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 2023;18:1-9, May. 2023, doi: https://doi.org/https://doi. org/10.29233/sdufeffd.1241050
  • 13.Meryem Cansu Ş, Kaan M, Hasan B. Validation of a Proposed Equation for Determining the Half-Thickness Value of Gamma and X-Ray Radiation. Süleyman Demirel University Faculty of Arts and Science Journal of Scienc. 2023;18:10-17, May. 2023, doi: https://doi.org/10.29233/sdufeffd.1244542
  • 14. Rogers D, Walters B, Kawrakow IJNRP. BEAMnrc users manual. 2009;509:12.
  • 15. Forster RA, Cox LJ, Barrett RF, Booth TE, Briesmeister JF, Brown FB, et al. MCNP™ version 5. 2004;213:82-6.
  • 16. Salvat F, Fernández-Varea JM, Sempau J, editors. PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport. Workshop proceedings; 2006: Citeseer.
  • 17. Agostinelli S, Allison J, Amako Ka, Apostolakis J, Araujo H, Arce P, et al. GEANT4—a simulation toolkit. 2003;506(3):250-303.
  • 18. Arce P, Lagares JI, Harkness L, Pérez-Astudillo D, Cañadas M, Rato P, et al. Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface. 2014;735:304-13.
  • 19. Murtagh F, Scott M, Wycis HT. Stainless steel cranioplasty. Am J Surg. 1956;92(3):393-402.doi: https://doi.org/10.1016/s0002-9610(56)80112-8
  • 20. Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39(6):743-9.doi: https://doi.org/10.1563/AAID-JOI-D-11-00002
  • 21. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69.doi: https://doi.org/10.1016/j.biomaterials.2007.07.013
  • 22. Thien A, King NK, Ang BT, Wang E, Ng I. Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurg. 2015;83(2):176-80.doi: https://doi.org/10.1016/j.wneu.2014.06.003
  • 23. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):118.doi: https://doi. org/10.1007/s10856-016-5731-4
  • 24. Pokorny D, Fulin P, Slouf M, Jahoda D, Landor I, Sosna A. [Polyetheretherketone (PEEK). Part II: application in clinical practice]. Acta Chir Orthop Traumatol Cech. 2010;77(6):470-8.
  • 25.Ott G. [Bone sarcoma (author’s transl)]. MMW Munch Med Wochenschr. 1978;120(40):1295-8.
  • 26. Molinari A, Straffelini G, Tesi B, Bacci T. Dry sliding wear mechanisms of the Ti6Al4V alloy. Wear. 1997;208(1):105-12.doi: https://doi.org/https://doi. org/10.1016/S0043-1648(96)07454-6
  • 27. Kobayashi S, Hara H, Okudera H, Takemae T, Sugita K. Usefulness of ceramic implants in neurosurgery. Neurosurgery. 1987;21(5):751-5.doi: https://doi. org/10.1227/00006123-198711000-00032
  • 28. Maier W. Biomaterials in skull base surgery. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc07.doi: https://doi.org/10.3205/cto000059
  • 29. Ganesh BKC, Ramanaih N, Chandrasekhar Rao PV. Dry Sliding Wear Behavior of Ti–6Al–4V Implant Alloy Subjected to Various Surface Treatments. Transactions of the Indian Institute of Metals. 2012;65(5):425-34. doi: https://doi. org/10.1007/s12666-012-0147-4
  • 30. Meshabi Asghar, Nejad Farshad Seyed. Monte Carlo Study on the Impact of Spinal Fixation Rods on Dose Distribution in Photon Beams. Reports of Practical Oncology & Radiotherapy, 2007;12(5), 261-266. doi: https://doi.org/10.1016/ S1507-1367(10)60064-8
  • 31. De Mello-Filho, F. V., Auader, M., Cano, E., Carrau, R. L., Myers, E. N., & Miles, C. E. Effect of Mandibular Titanium Reconstructive Plates on Radiation Dose. American Journal of Otolaryngology, 2003;24(4), 231-235. doi: https://doi.org/ 10.1016/s0196-0709(03)00033-4
  • 32. Buffard, E., Gschwind, R., Makovicka, L., & David, C. Monte Carlo Calculations of The İmpact of A Hip Prosthesis on The Dose Distribution. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006;251(1), 9-18. doi: https://doi.org/10.1016/j. nimb.2006.05.031
  • 33. Lin, S. Y., Chu, T. C., Lin, J. P., & Liu, M. T. The Effect of a Metal Hip Prosthesis on The Radiation Dose in Therapeutic Photon Beam İrradiations. Applied Radiation and İsotopes, 2002;57(1), 17-23. doi: https://doi.org/10.1016/s0969- 8043(02)00078-7

Investigation of the Effects of Biomaterials Used in Cranioplasty on Radiotherapy Dose Through the Monte Carlo Method

Yıl 2024, Cilt: 5 Sayı: 1, 16 - 21, 30.01.2024

Öz

Aim: The gold standard in the treatment of brain tumors is
radiotherapy and chemotherapy after surgery. Radiotherapy
with high-energy ionizing radiation after surgery has an important place in the treatment of brain tumors. Implants with
a high atomic number exhibit strong radiation attenuation and
scattering properties that could potentially compromise the
delivery of radiation therapy by distorting the dose distribution in and around the implant volume, complicating treatment planning in radiotherapy. In this study, it was aimed to
investigate the interaction of biomaterials used in cranioplasty
applications with X-rays used in radiotherapy using a GAMOS
simulation.
Methods: The head phantom defined in the GAMOS simulation includes, from left to right, 0.2 cm of skin, 0.3 cm of soft
tissue, 1 cm of skull, 12 cm of brain, 1 cm of skull, 0.3 cm of soft
tissue, and finally, 0.2 cm of skin. In order to observe the effect of different biomaterials, selected biomaterials (CCM alloy,
stainless steel, alumina, NiTi alloy, titanium, PEEK, PMMA,
and PTFE) were defined instead of a 1 cm skull. In this configuration, the brain tissue is also defined as the detector to absorb
energy.
Results: Cortical bone has a density of 1.920 g/cm3
and the
dose taken by the brain tissue was found to be 4,843 Gy. It was
observed that the dose value absorbed in the brain tissue decreased with the increase in the densities of the biomaterials
used in cranioplasty. Dose results for PTFE and PEEK biomaterials were found to be close to bone tissue.
Conclusion: As a result, PEEK and PMMA biomaterials,
whose densities are very close to those of bone tissue, showed
similarity to bone tissue in terms of radiotherapy dose distribution.

Kaynakça

  • 1.Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17 Suppl 4(Suppl 4):iv1-iv62.doi: https://doi.org/10.1093/neuonc/nov189
  • 2. Tas ZA, Kulahci O. Histopathological Analysis of Central Nervous System Metastases: Six Years of Data From a Tertiary Center. Cureus. 2022;14(2):e22151.doi: https://doi. org/10.7759/cureus.22151
  • 3. Hernandez-Hernandez A, Reyes-Moreno I, Gutierrez-Aceves A, Guerrero-Juarez V, Santos-Zambrano J, Lopez-Martinez M, et al. Primary Tumors of the Central Nervous System. Clinical Experience at a Third Level Center. Rev Invest Clin. 2018;70(4):177-83.doi: https://doi.org/10.24875/RIC.18002399
  • 4. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1-v75.doi: https://doi.org/10.1093/neuonc/now207
  • 5. Hill CI, Nixon CS, Ruehmeier JL, Wolf LM. Brain Tumors. Physical Therapy. 2002;82(5):496-502.doi: https://doi.org/10.1093/ptj/82.5.496
  • 6. Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83(5):708-14. doi: https://doi.org/10.1016/j.wneu.2015.01.014
  • 7. Pehlivanlı A, Bölükdemir MH. Investigating the effects of biomaterials on proton Bragg peak and secondary neutron production by the Monte Carlo method in the slab head phantom. Applied Radiation and Isotopes. 2022;180:110060. doi: https:// doi.org/https://doi.org/10.1016/j.apradiso.2021.110060
  • 8. Soydemir GP, Bilici N, Tiken EE, Balkanay AY, Sisman AF, Karacetin D. Hippocampal sparing for brain tumor radiotherapy: A retrospective study comparing intensity-modulated radiotherapy and volumetric-modulated arc therapy. J Cancer Res Ther. 2021;17(1):99-105.doi: https://doi.org/10.4103/jcrt.JCRT_32_19
  • 9. Das IJ, Cheng CW, Mitra RK, Kassaee A, Tochner Z, Solin LJJMp. Transmission and dose perturbations with high‐materials in clinical electron beams: Transmission and dose perturbations. 2004;31(12):3213-21.
  • 10. Arnfield MR, Otto K, Aroumougame VR, Alkins RD. The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy. Med Phys. 2005;32(1):12-8.doi: https://doi.org/10.1118/1.1829246
  • 11. Andrew Katsifis G, McKenzie DR, Hill R, Connor MO, Milross C, Suchowerska N. Radiation dose perturbation at the tissue interface with PEEK and Titanium bone implants: Monte Carlo simulation, treatment planning and film dosimetry. Radiation Physics and Chemistry. 2022;199:110398. doi: https://doi.org/https://doi.org/10.1016/j.radphyschem.2022.110398
  • 12. Meryem Cansu Ş and Kaan M. Evaluation of X-Ray Shielding Ability of Tungsten Rubber: A GAMOS Monte Carlo Study. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 2023;18:1-9, May. 2023, doi: https://doi.org/https://doi. org/10.29233/sdufeffd.1241050
  • 13.Meryem Cansu Ş, Kaan M, Hasan B. Validation of a Proposed Equation for Determining the Half-Thickness Value of Gamma and X-Ray Radiation. Süleyman Demirel University Faculty of Arts and Science Journal of Scienc. 2023;18:10-17, May. 2023, doi: https://doi.org/10.29233/sdufeffd.1244542
  • 14. Rogers D, Walters B, Kawrakow IJNRP. BEAMnrc users manual. 2009;509:12.
  • 15. Forster RA, Cox LJ, Barrett RF, Booth TE, Briesmeister JF, Brown FB, et al. MCNP™ version 5. 2004;213:82-6.
  • 16. Salvat F, Fernández-Varea JM, Sempau J, editors. PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport. Workshop proceedings; 2006: Citeseer.
  • 17. Agostinelli S, Allison J, Amako Ka, Apostolakis J, Araujo H, Arce P, et al. GEANT4—a simulation toolkit. 2003;506(3):250-303.
  • 18. Arce P, Lagares JI, Harkness L, Pérez-Astudillo D, Cañadas M, Rato P, et al. Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface. 2014;735:304-13.
  • 19. Murtagh F, Scott M, Wycis HT. Stainless steel cranioplasty. Am J Surg. 1956;92(3):393-402.doi: https://doi.org/10.1016/s0002-9610(56)80112-8
  • 20. Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39(6):743-9.doi: https://doi.org/10.1563/AAID-JOI-D-11-00002
  • 21. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69.doi: https://doi.org/10.1016/j.biomaterials.2007.07.013
  • 22. Thien A, King NK, Ang BT, Wang E, Ng I. Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurg. 2015;83(2):176-80.doi: https://doi.org/10.1016/j.wneu.2014.06.003
  • 23. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):118.doi: https://doi. org/10.1007/s10856-016-5731-4
  • 24. Pokorny D, Fulin P, Slouf M, Jahoda D, Landor I, Sosna A. [Polyetheretherketone (PEEK). Part II: application in clinical practice]. Acta Chir Orthop Traumatol Cech. 2010;77(6):470-8.
  • 25.Ott G. [Bone sarcoma (author’s transl)]. MMW Munch Med Wochenschr. 1978;120(40):1295-8.
  • 26. Molinari A, Straffelini G, Tesi B, Bacci T. Dry sliding wear mechanisms of the Ti6Al4V alloy. Wear. 1997;208(1):105-12.doi: https://doi.org/https://doi. org/10.1016/S0043-1648(96)07454-6
  • 27. Kobayashi S, Hara H, Okudera H, Takemae T, Sugita K. Usefulness of ceramic implants in neurosurgery. Neurosurgery. 1987;21(5):751-5.doi: https://doi. org/10.1227/00006123-198711000-00032
  • 28. Maier W. Biomaterials in skull base surgery. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc07.doi: https://doi.org/10.3205/cto000059
  • 29. Ganesh BKC, Ramanaih N, Chandrasekhar Rao PV. Dry Sliding Wear Behavior of Ti–6Al–4V Implant Alloy Subjected to Various Surface Treatments. Transactions of the Indian Institute of Metals. 2012;65(5):425-34. doi: https://doi. org/10.1007/s12666-012-0147-4
  • 30. Meshabi Asghar, Nejad Farshad Seyed. Monte Carlo Study on the Impact of Spinal Fixation Rods on Dose Distribution in Photon Beams. Reports of Practical Oncology & Radiotherapy, 2007;12(5), 261-266. doi: https://doi.org/10.1016/ S1507-1367(10)60064-8
  • 31. De Mello-Filho, F. V., Auader, M., Cano, E., Carrau, R. L., Myers, E. N., & Miles, C. E. Effect of Mandibular Titanium Reconstructive Plates on Radiation Dose. American Journal of Otolaryngology, 2003;24(4), 231-235. doi: https://doi.org/ 10.1016/s0196-0709(03)00033-4
  • 32. Buffard, E., Gschwind, R., Makovicka, L., & David, C. Monte Carlo Calculations of The İmpact of A Hip Prosthesis on The Dose Distribution. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006;251(1), 9-18. doi: https://doi.org/10.1016/j. nimb.2006.05.031
  • 33. Lin, S. Y., Chu, T. C., Lin, J. P., & Liu, M. T. The Effect of a Metal Hip Prosthesis on The Radiation Dose in Therapeutic Photon Beam İrradiations. Applied Radiation and İsotopes, 2002;57(1), 17-23. doi: https://doi.org/10.1016/s0969- 8043(02)00078-7
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yardımcı Sağlık ve Rehabilitasyon Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Meryem Cansu Şahin

Gökçe Nur Gündüz

Kaan Ciyerci

Ali Teke

Batuhan Yıldız

Yayımlanma Tarihi 30 Ocak 2024
Gönderilme Tarihi 20 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

AMA Şahin MC, Gündüz GN, Ciyerci K, Teke A, Yıldız B. Investigation of the Effects of Biomaterials Used in Cranioplasty on Radiotherapy Dose Through the Monte Carlo Method. JMS. Ocak 2024;5(1):16-21.