Review
BibTex RIS Cite

Eczacılık ve Yapay Zekâ

Year 2024, Volume: 5 Issue: 2, 37 - 47, 30.04.2024

Abstract

Endüstri 4.0 devriminin gerçekleşmesi ile kavramlar yeniden anlamlandırılmış ve birçok yeni kavram ortaya çıkmıştır. Yapay zekâ da bu kavramlardan biridir. Bununla
birlikte blok zincir, nesnelerin interneti, 5G gibi kavramlarla güncel teknolojiler oluşmuştur.
Teknolojinin hayatımıza daha fazla girmesinin, randevu,
reçeteleme ve hasta takibi gibi sağlık hizmetlerinde önemli
katkıları olmuştur. Pandemide sağlığın öneminin daha da
artmasıyla, teknolojiye ek olarak dünyada sağlık sistemlerinin hızla dijitalleştiği görülmektedir.
Yeni bir ilaç keşfi ortalama 14 yıl süren, yüklü maliyetlere sebep olan bir birikimdir. Bu keşiflerin birçoğu ise klinik denemelerinde başarısız olmaktadır. Bu sebeple ilaç
firmaları, son zamanlarda verimliliklerini artırmak ve
süreçten olumlu yönde etkilenmek için yapay zekâya yönelmişlerdir.
Yapay zekâ, insanın doğal zekâsına özgü olan, algılama,
karar verme ve üretme gibi bilişsel işlevleri taklit eden makineleri tanımlamak için kullanılır. Bu doğrultuda, modern süper bilgisayarlar ve yapay zekâ kullanılarak, moleküllerin etkilerinin tahmin edilmesi planlanmaktadır.
Yapay zekânın eczacılık sektörüne dahil olmasıyla hasta
tasarımı, in silico deneyler ve ilaç tedarik sürecindeki yeni
teknolojiler popülerlik kazanmıştır. Bu çalışmada amaç
dijitalleşmenin ana unsurlarından biri olan yapay zekânın
eczacılık üzerine etkisi hakkında bilgi vermektir.

References

  • 1. Çelik İN, ARSLAN FK, Tunç R, YILDIZ İ. İlaç Keşfi ve Geliştirilmesinde Yapay Zekâ. Journal of Faculty of Pharmacy of Ankara University. 2021;45(2):400-427.
  • 2. Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discovery Today. 2022;27(4):967-984.
  • 3. Akalın B, Veranyurt Ü. Sağlıkta Dijitalleşme ve Yapay Zekâ. SDÜ Sağlık Yönetimi Dergisi, 2020;2(2):128-137.
  • 4. İnce H, İmamoğlu SE, İmamoğlu SZ. Yapay Zekâ Uygulamalarının Karar Verme Üzerine Etkileri: Kavramsal Bir Çalışma. International Review of Economics and Management. 2021;9(1):50-63.
  • 5. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, 2019;24(3):773–780.
  • 6. Apell P, Eriksson H. Artificial intelligence (AI) healthcare technology innovations: the current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management. 2023;35(2):179–193.
  • 7. Lo YC, Ren G, Honda H, Davis KL. Artificial intelligence-based drug design and discovery. Cheminformatics and its applications. (2019).
  • 8. Tekpınar L, Erdem R. Kişiselleştirilmiş Tip ve Genom Araştırmalarının Sağlık Çıktıları Bağlamında Değerlendirilmesi. Hacettepe Sağlık İdaresi Dergisi, 2019; 22(4):843-862.
  • 9. Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci. 2022 Nov 5;23(21):13568. doi: 10.3390/ijms232113568.
  • 10. Anyoha R. The History of Artificial Intelligence [internet]. Special edition on artificial intelligence; [cited 2017 Aug 28]. Available from: https://sitn.hms.harvard.edu/ flash/2017/history-artificial-intelligence/
  • 11. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chemical reviews. 2019;119(18):10520- 10594.
  • 12. Steering Committee; Shoham Y, Perrault R, Brynjolfsson E, ClarkJ, Manyika J, Niebles J.C, Partnership L, Etchemendy J, Grosz B, and Project Manager: Bauer Z. Artificial Intelligence Index, Annual Report 2018: [cited 2023 Apr 5]. Available from: https://hai.stanford.edu/sites/default/files/2020-10/AI_Index_2018_Annual_Report.pdf
  • 13.Artifical Intelligence / Powering The Future Of Pharmacy. College of Pharmacy University of Florida [cited 2023 Apr 18]. Available from: https://pharmacy.ufl. edu/research/artificial-intelligence-empowering-the-future-of-pharmacy/
  • 14. How to Reduce Costs and Increase Efficiency in Drug Development [internet]. Simbec-Orion; 2022 [cited 2023 Apr 18]. Available from: https://www.simbecorion.com/how-to-reduce-drug-development-costs/
  • 15. Roser M, Ritchie H, Ortiz-Ospina, E. World population growth. Our world in data. 2013.
  • 16. Türkiye İstatistik Kurumu [internet]: [cited 2022 Sep 7] Available from: https:// data.tuik.gov.tr/
  • 17. Demirbağ BC, Timur M. Bir grup yaşlının ilaç kullanımı ile ilgili bilgi, tutum ve davranışları. Ankara Sağlık Hizmetleri Dergisi. 2012;11(1):1-8.
  • 18. Debong F, Mayer H, Kober J. Real-World Assessments of mySugr Mobile Health App. Diabetes Technol Ther. 2019:21(S2):235-240. [doi: 10.1089/dia.2019.0019S2-35]
  • 19. Mirzaei A Eczacılıkta Dijital Dönüşüm [Internet]. Yesil Science. Available form: https://www.yesilscience.com/digitalization-in-pharmacy/
  • 20. Mayer H, Bankosegger RP, Kober J. Sustainable improvement in quality of blood glucose control in users of mySugr’s integrated diabetes management solution. Diabetes. 2019;68(Supplement_1):953-P.
  • 21. Ayhan E, Aytekin M, Güvener H. Türkiye’de İlaç Tedarik Zincirinde Kullanılan İlaç Takip Sistemi ile Blok Zincir Tabanlı İlaç Tedarik Zinciri Uygulamalarının Karşılaştırılması. 7th İnternational Istanbul Scientific Research Congress;2021 Dec 18-19. Journal of Transportation and Logistics 2021;6(2):177-195.
  • 22. T.C. Sağlık Bakanlığı Türkiye İlaç ve Tıbbi Cihaz Kurumu, Akılcı İlaç Kullanımı [internet]. Available form: https://www.titck.gov.tr/faaliyetalanlari/ilac/akilci-ilac-kullanimi [cited 2023 Sep 7].
  • 23. Trafton A. Artificial intelligence yields new antibiotic. MIT News Office [Internet]. 2020 [cited 2022 Nov 13]. Available from: https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220
  • 24. Marchant J. Powerful antibiotics discovered using AI. Nature [Internet]. 2020 [cited 2022 Nov 13]. Available from: doi:https://doi.org/10.1038/d41586-020- 00018-3
  • 25. Higashihira S, Simpson SJ, Collier CD, Natoli RM, Kittaka M, Greenfield EM. Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro. Clin Orthop Relat Res. 2022;480(8):1476-1487.
  • 26. Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C. AI in small-molecule drug discovery: a coming wave? Nature; Nature Reviews Drug Discovery. 2022;21(3):175-6.
  • 27. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020;180(4):688-702.e13.
  • 28. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model[internet]. bioRxiv.; 2020 [cited 2022 Nov 13]. Available from: https://www.biorxiv.org/content/10.1101/2020.01.31.929547v1.article-metrics
  • 29. Kirkpatrick P. Machine learning for small molecule drug discovery in academia and industry. Natuer; biopharmadealmakers. 2023;3:100056.
  • 30. S. Sarwar et al., Physician perspectives on integration of artificial intelligence into diagnostic pathology.npj Digital Medicine. Scripps Research Translational Institute, npj Digital Medicine 2019;2(1):28.
  • 31. Sharma M, Savage C, Nair M, Larsson I, Svedberg P, Nygren, JM. Artificial Intelligence Applications in Health Care Practice: Scoping Review. Journal of Medical Internet Research, 2022;24(10):e40238.
  • 32. The Drug Development Process [internet]. U.S. Food and Drug Administration 2018 [cited 2022 Nov 13]. Available from: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
  • 33. New Drug Development Process [internet]. California Biomedical Research Association [cited 2022 Nov13]. Available from: https:// ca-biomed.org/wp-content/uploads/2020/08/FS-DrugDevelop.pdf
  • 34. Uçar Ö. İlaç Devleri Yapay Zekâ Şirketleriyle Birlikte Çalışıyor [internet]. Tek Doz Dijital 2018 [cited 2022 Nov 13]. Available from: https://tekdozdijital.com/yapay-zekâ-ilac/
  • 35. Schuhmacher A, Gatto A, Kuss M, Gassmann O, Hinder M. Big Techs and startups in pharmaceutical R&D - A 2020 perspective on artificial intelligence. Drug Discovery Today. 2021;26(10):p2226-2231.
  • 36. Altınel S. Yapay Zekâ ve Ar-Ge [internet]. Pharmaworld 2021[cited 2022 Nov 13]. Available from: https://pharmaworlddergi.com/?p=841
  • 37. Kulkov I. The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technology in Society. 2021;66:101629.
  • 38. AI in pharma Top five applications [internet]: Netcribes,08 Sep,2020 Available from: https://www.netscribes.com/ai-in-pharma-applications/
  • 39. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 2022;1-28.
  • 40. Merative [internet]. Wikipedia. [cited 2022 Nov 16] Available from: https://en.wikipedia.org/wiki/Merative
  • 41. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases. 2020;20(4);400-402.
  • 42. Brackley P. BenevolentAI analyses approved drug as potential Covid-19 treatment [internet]. Cambridge Indipendent; 2020 [cited 2022 Nov 13]. Available from: https://www.cambridgeindependent.co.uk/business/benevolentai-analyses-approved-drug-as-potential-covid-19-treatment-9102147/
  • 43. Schultz MB, Vera D, Sinclair DA. Can artificial intelligence identify effective COVID-19 therapies? EMBO Molecular Medicine. 2020; 12: e12817.
  • 44. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet. 2020;395.
  • 45. Allawi, SH, Farman, MS, & Abdulkareem, NH. A comparative study between recurrent miscarriages resulting from thyroid dysfunction and autoimmune diseases in the first trimester of pregnancy. Journal of Pharmaceutical Negative Results. 2022;13(1):1843.
  • 46. Pedrosa TÍ, Vasconcelos FF, Medeiros L, Silva LD. Machine learning application to quantify the tremor level for parkinson’s disease patients. Procedia computer science. 2018;138:215-220.
  • 47. Thadatritharntip W, Vongurai R. Artificial Intelligence Healthcare: An Empirical Study on Users’ Attitude and Intention to Use toward a Personal Home Healthcare Robot to Improve Health and Wellness Conditions in Bangkok. Thailand. UTCC International Journal of Business & Economics, 2020;12(1):3-25.
  • 48. Feride Eşkin Bacaksız, Metin Yılmaz, Kalbinur Ezizi, Handan Alan. Sağlık Hizmetlerinde Robotları Yönetmek Managing Robots in Healthcare. Sayı:3, Cilt:7, Yıl:2020
  • 49. Betül Akalın, Ülkü Veranyurt. Sağlık Hizmetleri ve Yönetiminde Yapay Zekâ Artificial Intelligence in Health Services and Management. Sayı:1, Cilt:5, Yıl: 2021
  • 50. Gandla K, Reddy KTK, Babu PV, Sagapola R, Sudhakar P. A review of artificial intelligence in treatment of Covid-19. Journal of Pharmaceutical Negative Results. 2022;13(01)254-264
  • 51. Parkins K. Exscientia’s third AI-discovered molecule to enter trials [internet]. Clinical Trials Arena; 2021 [cited 2022 Nov 13]. Available from: https://www. clinicaltrialsarena.com/news/exscientias-third-ai-discovered-molecule-to-enter-trials/
  • 52. Sumitomo Dainippon Pharma and Exscientia Joint Development New Drug Candidate Created Using Artificial Intelligence (AI) Begins Clinical Study [internet]. Sumitomo Dainippon Pharma Co. Ltd. and Exscientia Ltd.; 2020 [cited 2022 Nov 13]. Available from: https://exscientia.cdn.prismic.io/exscientia/af0c7de4-e2ed-4526-b2a3-a26735ea8bf5_Press+release_30012020_E.pdf
  • 53. Wills, T, AI drug discovery: assessing the first AI-designed drug candidates to go into human clinical trials [internet]. CAS; 2022 [cited 2022 Nov 13]. Available from: https://www.cas.org/resources/cas-insights/drug-discovery/ai-designed-drug-candidates
  • 54. Farghali H, Canová NK, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiological Research. 2021;70(4):715-722.
  • 55. Burki T. A new paradigm for drug development. The Lancet Digital Health, 2020;2(5):226-227.
  • 56. Shazai A, How artificial intelligence is revolutionising drug design [internet]. Varsity; 2022 [cited 2023 May 8]. Available from: https://www.varsity.co.uk/ science/23527
  • 57. Melo MCR, Maasch JRMA, Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Communications Biology. 2021;4:1050.
  • 58. Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C, AI in small-molecule drug discovery: a coming wave?. Nat Rev Drug Discov. 2022;21(3):175-176.
Year 2024, Volume: 5 Issue: 2, 37 - 47, 30.04.2024

Abstract

References

  • 1. Çelik İN, ARSLAN FK, Tunç R, YILDIZ İ. İlaç Keşfi ve Geliştirilmesinde Yapay Zekâ. Journal of Faculty of Pharmacy of Ankara University. 2021;45(2):400-427.
  • 2. Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discovery Today. 2022;27(4):967-984.
  • 3. Akalın B, Veranyurt Ü. Sağlıkta Dijitalleşme ve Yapay Zekâ. SDÜ Sağlık Yönetimi Dergisi, 2020;2(2):128-137.
  • 4. İnce H, İmamoğlu SE, İmamoğlu SZ. Yapay Zekâ Uygulamalarının Karar Verme Üzerine Etkileri: Kavramsal Bir Çalışma. International Review of Economics and Management. 2021;9(1):50-63.
  • 5. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, 2019;24(3):773–780.
  • 6. Apell P, Eriksson H. Artificial intelligence (AI) healthcare technology innovations: the current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management. 2023;35(2):179–193.
  • 7. Lo YC, Ren G, Honda H, Davis KL. Artificial intelligence-based drug design and discovery. Cheminformatics and its applications. (2019).
  • 8. Tekpınar L, Erdem R. Kişiselleştirilmiş Tip ve Genom Araştırmalarının Sağlık Çıktıları Bağlamında Değerlendirilmesi. Hacettepe Sağlık İdaresi Dergisi, 2019; 22(4):843-862.
  • 9. Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci. 2022 Nov 5;23(21):13568. doi: 10.3390/ijms232113568.
  • 10. Anyoha R. The History of Artificial Intelligence [internet]. Special edition on artificial intelligence; [cited 2017 Aug 28]. Available from: https://sitn.hms.harvard.edu/ flash/2017/history-artificial-intelligence/
  • 11. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chemical reviews. 2019;119(18):10520- 10594.
  • 12. Steering Committee; Shoham Y, Perrault R, Brynjolfsson E, ClarkJ, Manyika J, Niebles J.C, Partnership L, Etchemendy J, Grosz B, and Project Manager: Bauer Z. Artificial Intelligence Index, Annual Report 2018: [cited 2023 Apr 5]. Available from: https://hai.stanford.edu/sites/default/files/2020-10/AI_Index_2018_Annual_Report.pdf
  • 13.Artifical Intelligence / Powering The Future Of Pharmacy. College of Pharmacy University of Florida [cited 2023 Apr 18]. Available from: https://pharmacy.ufl. edu/research/artificial-intelligence-empowering-the-future-of-pharmacy/
  • 14. How to Reduce Costs and Increase Efficiency in Drug Development [internet]. Simbec-Orion; 2022 [cited 2023 Apr 18]. Available from: https://www.simbecorion.com/how-to-reduce-drug-development-costs/
  • 15. Roser M, Ritchie H, Ortiz-Ospina, E. World population growth. Our world in data. 2013.
  • 16. Türkiye İstatistik Kurumu [internet]: [cited 2022 Sep 7] Available from: https:// data.tuik.gov.tr/
  • 17. Demirbağ BC, Timur M. Bir grup yaşlının ilaç kullanımı ile ilgili bilgi, tutum ve davranışları. Ankara Sağlık Hizmetleri Dergisi. 2012;11(1):1-8.
  • 18. Debong F, Mayer H, Kober J. Real-World Assessments of mySugr Mobile Health App. Diabetes Technol Ther. 2019:21(S2):235-240. [doi: 10.1089/dia.2019.0019S2-35]
  • 19. Mirzaei A Eczacılıkta Dijital Dönüşüm [Internet]. Yesil Science. Available form: https://www.yesilscience.com/digitalization-in-pharmacy/
  • 20. Mayer H, Bankosegger RP, Kober J. Sustainable improvement in quality of blood glucose control in users of mySugr’s integrated diabetes management solution. Diabetes. 2019;68(Supplement_1):953-P.
  • 21. Ayhan E, Aytekin M, Güvener H. Türkiye’de İlaç Tedarik Zincirinde Kullanılan İlaç Takip Sistemi ile Blok Zincir Tabanlı İlaç Tedarik Zinciri Uygulamalarının Karşılaştırılması. 7th İnternational Istanbul Scientific Research Congress;2021 Dec 18-19. Journal of Transportation and Logistics 2021;6(2):177-195.
  • 22. T.C. Sağlık Bakanlığı Türkiye İlaç ve Tıbbi Cihaz Kurumu, Akılcı İlaç Kullanımı [internet]. Available form: https://www.titck.gov.tr/faaliyetalanlari/ilac/akilci-ilac-kullanimi [cited 2023 Sep 7].
  • 23. Trafton A. Artificial intelligence yields new antibiotic. MIT News Office [Internet]. 2020 [cited 2022 Nov 13]. Available from: https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220
  • 24. Marchant J. Powerful antibiotics discovered using AI. Nature [Internet]. 2020 [cited 2022 Nov 13]. Available from: doi:https://doi.org/10.1038/d41586-020- 00018-3
  • 25. Higashihira S, Simpson SJ, Collier CD, Natoli RM, Kittaka M, Greenfield EM. Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro. Clin Orthop Relat Res. 2022;480(8):1476-1487.
  • 26. Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C. AI in small-molecule drug discovery: a coming wave? Nature; Nature Reviews Drug Discovery. 2022;21(3):175-6.
  • 27. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020;180(4):688-702.e13.
  • 28. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model[internet]. bioRxiv.; 2020 [cited 2022 Nov 13]. Available from: https://www.biorxiv.org/content/10.1101/2020.01.31.929547v1.article-metrics
  • 29. Kirkpatrick P. Machine learning for small molecule drug discovery in academia and industry. Natuer; biopharmadealmakers. 2023;3:100056.
  • 30. S. Sarwar et al., Physician perspectives on integration of artificial intelligence into diagnostic pathology.npj Digital Medicine. Scripps Research Translational Institute, npj Digital Medicine 2019;2(1):28.
  • 31. Sharma M, Savage C, Nair M, Larsson I, Svedberg P, Nygren, JM. Artificial Intelligence Applications in Health Care Practice: Scoping Review. Journal of Medical Internet Research, 2022;24(10):e40238.
  • 32. The Drug Development Process [internet]. U.S. Food and Drug Administration 2018 [cited 2022 Nov 13]. Available from: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
  • 33. New Drug Development Process [internet]. California Biomedical Research Association [cited 2022 Nov13]. Available from: https:// ca-biomed.org/wp-content/uploads/2020/08/FS-DrugDevelop.pdf
  • 34. Uçar Ö. İlaç Devleri Yapay Zekâ Şirketleriyle Birlikte Çalışıyor [internet]. Tek Doz Dijital 2018 [cited 2022 Nov 13]. Available from: https://tekdozdijital.com/yapay-zekâ-ilac/
  • 35. Schuhmacher A, Gatto A, Kuss M, Gassmann O, Hinder M. Big Techs and startups in pharmaceutical R&D - A 2020 perspective on artificial intelligence. Drug Discovery Today. 2021;26(10):p2226-2231.
  • 36. Altınel S. Yapay Zekâ ve Ar-Ge [internet]. Pharmaworld 2021[cited 2022 Nov 13]. Available from: https://pharmaworlddergi.com/?p=841
  • 37. Kulkov I. The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technology in Society. 2021;66:101629.
  • 38. AI in pharma Top five applications [internet]: Netcribes,08 Sep,2020 Available from: https://www.netscribes.com/ai-in-pharma-applications/
  • 39. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 2022;1-28.
  • 40. Merative [internet]. Wikipedia. [cited 2022 Nov 16] Available from: https://en.wikipedia.org/wiki/Merative
  • 41. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases. 2020;20(4);400-402.
  • 42. Brackley P. BenevolentAI analyses approved drug as potential Covid-19 treatment [internet]. Cambridge Indipendent; 2020 [cited 2022 Nov 13]. Available from: https://www.cambridgeindependent.co.uk/business/benevolentai-analyses-approved-drug-as-potential-covid-19-treatment-9102147/
  • 43. Schultz MB, Vera D, Sinclair DA. Can artificial intelligence identify effective COVID-19 therapies? EMBO Molecular Medicine. 2020; 12: e12817.
  • 44. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet. 2020;395.
  • 45. Allawi, SH, Farman, MS, & Abdulkareem, NH. A comparative study between recurrent miscarriages resulting from thyroid dysfunction and autoimmune diseases in the first trimester of pregnancy. Journal of Pharmaceutical Negative Results. 2022;13(1):1843.
  • 46. Pedrosa TÍ, Vasconcelos FF, Medeiros L, Silva LD. Machine learning application to quantify the tremor level for parkinson’s disease patients. Procedia computer science. 2018;138:215-220.
  • 47. Thadatritharntip W, Vongurai R. Artificial Intelligence Healthcare: An Empirical Study on Users’ Attitude and Intention to Use toward a Personal Home Healthcare Robot to Improve Health and Wellness Conditions in Bangkok. Thailand. UTCC International Journal of Business & Economics, 2020;12(1):3-25.
  • 48. Feride Eşkin Bacaksız, Metin Yılmaz, Kalbinur Ezizi, Handan Alan. Sağlık Hizmetlerinde Robotları Yönetmek Managing Robots in Healthcare. Sayı:3, Cilt:7, Yıl:2020
  • 49. Betül Akalın, Ülkü Veranyurt. Sağlık Hizmetleri ve Yönetiminde Yapay Zekâ Artificial Intelligence in Health Services and Management. Sayı:1, Cilt:5, Yıl: 2021
  • 50. Gandla K, Reddy KTK, Babu PV, Sagapola R, Sudhakar P. A review of artificial intelligence in treatment of Covid-19. Journal of Pharmaceutical Negative Results. 2022;13(01)254-264
  • 51. Parkins K. Exscientia’s third AI-discovered molecule to enter trials [internet]. Clinical Trials Arena; 2021 [cited 2022 Nov 13]. Available from: https://www. clinicaltrialsarena.com/news/exscientias-third-ai-discovered-molecule-to-enter-trials/
  • 52. Sumitomo Dainippon Pharma and Exscientia Joint Development New Drug Candidate Created Using Artificial Intelligence (AI) Begins Clinical Study [internet]. Sumitomo Dainippon Pharma Co. Ltd. and Exscientia Ltd.; 2020 [cited 2022 Nov 13]. Available from: https://exscientia.cdn.prismic.io/exscientia/af0c7de4-e2ed-4526-b2a3-a26735ea8bf5_Press+release_30012020_E.pdf
  • 53. Wills, T, AI drug discovery: assessing the first AI-designed drug candidates to go into human clinical trials [internet]. CAS; 2022 [cited 2022 Nov 13]. Available from: https://www.cas.org/resources/cas-insights/drug-discovery/ai-designed-drug-candidates
  • 54. Farghali H, Canová NK, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiological Research. 2021;70(4):715-722.
  • 55. Burki T. A new paradigm for drug development. The Lancet Digital Health, 2020;2(5):226-227.
  • 56. Shazai A, How artificial intelligence is revolutionising drug design [internet]. Varsity; 2022 [cited 2023 May 8]. Available from: https://www.varsity.co.uk/ science/23527
  • 57. Melo MCR, Maasch JRMA, Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Communications Biology. 2021;4:1050.
  • 58. Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C, AI in small-molecule drug discovery: a coming wave?. Nat Rev Drug Discov. 2022;21(3):175-176.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Allied Health and Rehabilitation Science (Other)
Journal Section Reviews
Authors

Büşra Sude Yanartaş

Hilal Kuday

Publication Date April 30, 2024
Submission Date August 21, 2023
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

AMA Yanartaş BS, Kuday H. Eczacılık ve Yapay Zekâ. JMS. April 2024;5(2):37-47.