BibTex RIS Cite

SARS-CoV-2 Aşı Çalışmaları

Year 2020, Volume: 1 Issue: 1, 42 - 47, 30.06.2020

Abstract

Dünya Sağlık Örgütü DSÖ Çin Ülke Ofisi 31 Aralık 2019’da Çin’in Hubei Eyaleti, Wuhan şehrinde etiyolojisi bilinmeyen pnömoni vakaları bildirmiştir. Hastalık etkeni tanımlandıktan sonra etken‚‘Ağır akut solunum yolu yetersizliği sendromu korona virüs 2’ SARSCoV-2 , yol açtığı hastalık “Koronavirüs hastalığı 2019 COVID-19 ” olarak isimlendirilmiştir. Vaka sayıları hızla artarak tüm dünyaya yayılmış ve 11 Mart 2020’de DSÖ tarafından pandemi ilan edilmiştir. SARS-CoV-2 büyük, pozitif polariteli, tek zincirli, zarflı, polimorfik bir RNA virüsüdür. Spike S proteini virüsün en değişken bölgesi olup, konak hücrede anjiotensin dönüştürücü enzim 2 reseptörüne bağlanma, membran füzyonu, konak hücre tropizminin belirlenmesini sağlar ve konak spesifitesi, hastalığın yayılımı ve insan nötralizan antikor gelişimi ile ilişkilidir. Yüzey glikoproteinleri aşı geliştirmede en önemli hedeftir. Yeni coronavirusun tüm dünyada salgına sebep olması, hızlı yayılması, mortalite oranının yüksek olması, tam etkin tedavinin henüz olmaması nedeni ile tedavilerden daha uygun maliyetli ve küresel sağlığın korunması için aşının ivedilikle bulunma çalışmalarını tetiklemiştir. DSÖ’nün açıklamasına göre 2 Haziran 2020 tarihi itibari ile klinik aşamada faz 1, 2 ve 2/3 aşamalarında 10, preklinik aşamada 123 SARS-CoV-2 aşı adayı bulunmaktadır. Aşı geliştirmedeki amaç hastalığın şiddetini, virüsün bulaşını ve gelecekteki hastalık yükünü azaltmaktır. Daha önce yapılan diğer koronavirüs aşı çalışmaları SARS-CoV-2 aşı çalışmalarına aşı geliştirme sürecinde öncü ve zaman kazandırıcı olması beklenmektedir.

References

  • Wuhan Municipal Health Commission 2019 Report of clustering pneumonia of unknown etiology in Wuhan City. http://wjw.wuhan.gov.cn/front/web/ showDetail/2019123108989
  • World Health Organization 2020 Novel coronavirus 2019-nCoV . Situation Report-22. 11 February 2020. https://www.who.int/docs/ default-source/coronaviruse/situationreports/ 20200211-sitrep-22-ncov. pdf?fvrsn=fb6d49b1_2
  • Fontanet A. COVID-19: What we have learnt as of 20 February 2020 by Arnaud Fontanet, Institute Pasteur.
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report-11.31 January 2020. https://www.who.int/docs/default- source/coronaviruse/situation-re-ports/20200131-sitrep-11-ncov. pdf?sfvrsn=de7c0f7_4
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report. 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general- s-open-ing-remarks-at-the-media-briefing-on-covid-19---11-March-2020
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report-134. 2 June 2020.
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses.Nat Rev Microbiol. 2019;17:181-192. doi: 10.1038/s41579-018-0118-9.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Version 2. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978- 1-4939-2438-7_1.
  • Hoffmann M, Kleine H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  • Wang Q, Zhang Y, Wu L. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020 Apr 7. pii: S0092-8674 20 30338-X. doi: 10.1016/j.cell.2020.03.045.
  • Zhang C, Maruggi G, Shan H, Li J. 2019. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594. doi: 10.3389/ fimmu.2019.00594. ECollection 2019.
  • Andre F E. 2001. The future of vaccines, immunisation concepts and practice. Vaccine 19: 2206-2209.
  • Violaine S. Mitchell, Nalini M. Philipose, and Jay P. Sanford. Stages of Vaccine Development. The Children’s Vaccine Initiative: Achieving the Vision. 1993;6:109-127
  • Padron-Regalado E.Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains.Infect Dis Ther.2020; 9 2 : 255-274.doi: 10.10007/ s40121-020-00300
  • Zhao J, Perera RAPM, Kayali G, Meyerholz D, Perlman S, Peiris M. Passive immunotherapy with dromedary immune serum in an experimental animal model for middle east respiratory syndrome. J. Virol. 2015;89,6117–6120. doi: 10.1128/JVI.00446-415.
  • Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL et al. Immunogenicity and structures of a rationally designed prefusion MERS- CoV spike antigen. Proc. Natl. Acad. Sci. U.S.A.2017;114, E7348–E7357.doi: 10.1073/pnas.1707304114.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo- EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;1263, 1260–1263. doi: 10.1126/science.abb2507.
  • Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng C. Intranasal vaccination with recombinant receptor-binding domain of MERSCoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine. 2014;32:2100–2108. doi: 10.1016/j.vaccine.2014.02.004.
  • Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice ? J. Virol. 2010;84, 9318–9325. doi:10.1128/ JVI.01049-1010
  • Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC et al. Identification of human neutralizing antibodies against MERSCoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. U.S.A. 2014;111:E2018- 26. doi: 10.1073/pnas.1402074111.
  • Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan, T, Xiao X et al. Potent cross- reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 2007;104, 12123–12128. doi:10.1073/ pnas.0701000104.
  • Kandeel M . Bioinformatics analysis of the recent MERS-CoV with special reference to the virus-encoded Spike protein. Mol. Enzymol. Drug Targets.2018;01,1–10. doi: 10.21767/2572-5475.10001.
  • Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature.2013; 495, 251–254. doi: 10.1038/natüre 12005.
  • Luo CM, Wang N, Yang XL, Liu HZ, Zhang W, Li B et al. Discovery of novel bat coronaviruses in south china that use the same receptor as middle east respiratory syndrome coronavirus. J. Virol. 2018;92:e00116-18. doi:10.1128/ JVI.00116-118.
  • Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology. 2005; 334: 160-165.
  • Clover Biopharmaceuticals vaccines programs. Available from http://www. cloverbiopharma.com/index.php?m= content&c=index&a=lists&catid=42. Accessed 28 Feb. 2020.
  • ‘Significant step’ in COVID-19 vaccine quest Available from 2020/02/ significantstep%E2%80%99-covid-19-vaccine-quest. Accessed 28 Feb. 2020.
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 2011;23: 421-429.
  • Mukherjee R .Global efforts on vaccine for COVID-19: Since, sooner or later, we all will catch the coronavirus.J Biosci.2020;45:68. doi: 10.1007/s12038- 020-00040-7
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17: 261-279.
  • mRNA platform: Enabling Drug Discovery & Development Available from https://www.modernatx.com/mrna-technology/mrna-platform-enabling-drug- discovery-development. Accessed 28 Feb. 2020.
  • Moderna Announces Positive Interim Phase 1 Data for its mRNA Vaccine mRNA-1273 Against Novel Coronavirus. May 18, 2020.
  • Almazán F, Dediego ML, Sola I, Zuñiga S, Nieto-torres JL,Marquez-jurado S et al. A Vaccine candidate east respiratory syndrome coronavirus as a vaccine candidate. Mbio.2013; 4, 1–11. doi: 10.1128/mBio.00650-13.
  • Lokugamage K G, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus SCoV S protein protect mice against challenge with SCoV. Vaccine 26. 2008;797–808. doi:1016/j.vaccine.2007.11.092.
  • Zuniga A, Wang Z, Liniger M, Hangartner L, Caballero M et al. Attenuated measles virus as a vaccine vector. Vaccine. 2007;25 2974–298.
  • Kennedy JS and Greenberg RN 2009 IMVAMUNE: modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev. Vaccines 8 13–24.
  • World Health Organization 2020 . DRAFT landscape of COVID-19 candidate vaccines – 2 June 2020.
  • Le TT, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. COVID-19 vaccine development landscape. Nature Reviews Drug Discovery. 2020; 9 5 :305-306.doi: 10.1038/d41573-020-00073-5.
  • Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. BioRxiv. 2020. doi: https://doi. org/10.1101/2020.05.13.093195
  • Oxford University. 22 May 2020. doi:http://www.ox.ac.uk/news/2020-05-22- oxford-covid-19-vaccine-begin-phase-iiiii-human-trials.
  • Zhu F, Li Y, Guan X, Hou L, Wang W, Li J et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-scalationopen-label, non-randomised, first-in-human trial. Lanset. 2020;S0140-6736 20 31208-3. doi: 10.1016/S0140-6736 20 31208-3.
  • Lee N, McGeer A. The starting line for COVID-19 vaccine development Lanset.May 28, 2020. doi.org/10.1016/ S0140-6736 20 31239-3
  • Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, Crevel RV, Frank L. van de Veerdonk FL, Bonten M. Trained immunity: a tool for reducing susceptibility and severity of SARS-CoV-2 infection. Cell. S0092- 8674 20 30507-9. doi.org/10.1016/j.cell.2020. 04.042
  • Kumar J, Meena J. Demystifying BCG Vaccine and COVID-19 Relationship. Indian Pediatr. 2020;S097475591600168.
  • GSK 2016 Update on GSK’s response to the Zika virüs disease outbreak. gsk. com
  • WHO 2020 DRAFT landscape of COVID-19 candidate vaccines. who.int March 20.

SARS-CoV-2 Vaccine Researches

Year 2020, Volume: 1 Issue: 1, 42 - 47, 30.06.2020

Abstract

On December 31, 2019, the World Health Organization WHO China Country Office reported pneumonia cases of unknown etiology in Wuhan, China, Hubei Province. After the virüs agent was identified, the agent of the disease was named as “Severe acute respiratory failure syndrome corona virus 2” SARS-CoV-2 , the name of the disease caused by Corona virus disease 2019 COVID-19 . The number of cases increased rapidly and spread all over the world and was declared as a pandemic by WHO on March 11, 2020. SARS-CoV-2 is a big, positive-sense, single chain, enveloped, polymorphic RNA virus. Spike S protein, the most variable region of the virus, allows binding to the host cell angiotensin converting enzyme-2 receptor, membrane fusion, determination of host cell tropism and associated with host specificity, spreading and human neutralizing antibody development. Surface glycoproteins are the most important target in vaccine development. Since the new coronavirus caused epidemic worldwide, spread rapidly, has high mortality rate, and not yet found a fully effective treatment, it has triggered the efforts to find vaccine more cost-effectively than the treatments and to protect global health. According to the WHO statement, as of June 2, 2020, there are 10 candidates for SARSCoV-2 vaccine at the clinical stage phase 1, 2, 2/3 stage and 123 in the preclinical stage. The aim of vaccine development is to reduce the severity of the disease, transmission of the virus and the burden of future disease. Other previous coronavirus vaccine studies are expected to be pioneering and time-saving for SARS-CoV-2 vaccine studies in the vaccine development process.

References

  • Wuhan Municipal Health Commission 2019 Report of clustering pneumonia of unknown etiology in Wuhan City. http://wjw.wuhan.gov.cn/front/web/ showDetail/2019123108989
  • World Health Organization 2020 Novel coronavirus 2019-nCoV . Situation Report-22. 11 February 2020. https://www.who.int/docs/ default-source/coronaviruse/situationreports/ 20200211-sitrep-22-ncov. pdf?fvrsn=fb6d49b1_2
  • Fontanet A. COVID-19: What we have learnt as of 20 February 2020 by Arnaud Fontanet, Institute Pasteur.
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report-11.31 January 2020. https://www.who.int/docs/default- source/coronaviruse/situation-re-ports/20200131-sitrep-11-ncov. pdf?sfvrsn=de7c0f7_4
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report. 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general- s-open-ing-remarks-at-the-media-briefing-on-covid-19---11-March-2020
  • World Health Organization. Novel coronavirus 2019-nCoV . Situation Report-134. 2 June 2020.
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses.Nat Rev Microbiol. 2019;17:181-192. doi: 10.1038/s41579-018-0118-9.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Version 2. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978- 1-4939-2438-7_1.
  • Hoffmann M, Kleine H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  • Wang Q, Zhang Y, Wu L. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020 Apr 7. pii: S0092-8674 20 30338-X. doi: 10.1016/j.cell.2020.03.045.
  • Zhang C, Maruggi G, Shan H, Li J. 2019. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594. doi: 10.3389/ fimmu.2019.00594. ECollection 2019.
  • Andre F E. 2001. The future of vaccines, immunisation concepts and practice. Vaccine 19: 2206-2209.
  • Violaine S. Mitchell, Nalini M. Philipose, and Jay P. Sanford. Stages of Vaccine Development. The Children’s Vaccine Initiative: Achieving the Vision. 1993;6:109-127
  • Padron-Regalado E.Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains.Infect Dis Ther.2020; 9 2 : 255-274.doi: 10.10007/ s40121-020-00300
  • Zhao J, Perera RAPM, Kayali G, Meyerholz D, Perlman S, Peiris M. Passive immunotherapy with dromedary immune serum in an experimental animal model for middle east respiratory syndrome. J. Virol. 2015;89,6117–6120. doi: 10.1128/JVI.00446-415.
  • Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL et al. Immunogenicity and structures of a rationally designed prefusion MERS- CoV spike antigen. Proc. Natl. Acad. Sci. U.S.A.2017;114, E7348–E7357.doi: 10.1073/pnas.1707304114.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo- EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;1263, 1260–1263. doi: 10.1126/science.abb2507.
  • Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng C. Intranasal vaccination with recombinant receptor-binding domain of MERSCoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine. 2014;32:2100–2108. doi: 10.1016/j.vaccine.2014.02.004.
  • Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice ? J. Virol. 2010;84, 9318–9325. doi:10.1128/ JVI.01049-1010
  • Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC et al. Identification of human neutralizing antibodies against MERSCoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. U.S.A. 2014;111:E2018- 26. doi: 10.1073/pnas.1402074111.
  • Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan, T, Xiao X et al. Potent cross- reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 2007;104, 12123–12128. doi:10.1073/ pnas.0701000104.
  • Kandeel M . Bioinformatics analysis of the recent MERS-CoV with special reference to the virus-encoded Spike protein. Mol. Enzymol. Drug Targets.2018;01,1–10. doi: 10.21767/2572-5475.10001.
  • Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature.2013; 495, 251–254. doi: 10.1038/natüre 12005.
  • Luo CM, Wang N, Yang XL, Liu HZ, Zhang W, Li B et al. Discovery of novel bat coronaviruses in south china that use the same receptor as middle east respiratory syndrome coronavirus. J. Virol. 2018;92:e00116-18. doi:10.1128/ JVI.00116-118.
  • Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology. 2005; 334: 160-165.
  • Clover Biopharmaceuticals vaccines programs. Available from http://www. cloverbiopharma.com/index.php?m= content&c=index&a=lists&catid=42. Accessed 28 Feb. 2020.
  • ‘Significant step’ in COVID-19 vaccine quest Available from 2020/02/ significantstep%E2%80%99-covid-19-vaccine-quest. Accessed 28 Feb. 2020.
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 2011;23: 421-429.
  • Mukherjee R .Global efforts on vaccine for COVID-19: Since, sooner or later, we all will catch the coronavirus.J Biosci.2020;45:68. doi: 10.1007/s12038- 020-00040-7
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17: 261-279.
  • mRNA platform: Enabling Drug Discovery & Development Available from https://www.modernatx.com/mrna-technology/mrna-platform-enabling-drug- discovery-development. Accessed 28 Feb. 2020.
  • Moderna Announces Positive Interim Phase 1 Data for its mRNA Vaccine mRNA-1273 Against Novel Coronavirus. May 18, 2020.
  • Almazán F, Dediego ML, Sola I, Zuñiga S, Nieto-torres JL,Marquez-jurado S et al. A Vaccine candidate east respiratory syndrome coronavirus as a vaccine candidate. Mbio.2013; 4, 1–11. doi: 10.1128/mBio.00650-13.
  • Lokugamage K G, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus SCoV S protein protect mice against challenge with SCoV. Vaccine 26. 2008;797–808. doi:1016/j.vaccine.2007.11.092.
  • Zuniga A, Wang Z, Liniger M, Hangartner L, Caballero M et al. Attenuated measles virus as a vaccine vector. Vaccine. 2007;25 2974–298.
  • Kennedy JS and Greenberg RN 2009 IMVAMUNE: modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev. Vaccines 8 13–24.
  • World Health Organization 2020 . DRAFT landscape of COVID-19 candidate vaccines – 2 June 2020.
  • Le TT, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. COVID-19 vaccine development landscape. Nature Reviews Drug Discovery. 2020; 9 5 :305-306.doi: 10.1038/d41573-020-00073-5.
  • Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. BioRxiv. 2020. doi: https://doi. org/10.1101/2020.05.13.093195
  • Oxford University. 22 May 2020. doi:http://www.ox.ac.uk/news/2020-05-22- oxford-covid-19-vaccine-begin-phase-iiiii-human-trials.
  • Zhu F, Li Y, Guan X, Hou L, Wang W, Li J et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-scalationopen-label, non-randomised, first-in-human trial. Lanset. 2020;S0140-6736 20 31208-3. doi: 10.1016/S0140-6736 20 31208-3.
  • Lee N, McGeer A. The starting line for COVID-19 vaccine development Lanset.May 28, 2020. doi.org/10.1016/ S0140-6736 20 31239-3
  • Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, Crevel RV, Frank L. van de Veerdonk FL, Bonten M. Trained immunity: a tool for reducing susceptibility and severity of SARS-CoV-2 infection. Cell. S0092- 8674 20 30507-9. doi.org/10.1016/j.cell.2020. 04.042
  • Kumar J, Meena J. Demystifying BCG Vaccine and COVID-19 Relationship. Indian Pediatr. 2020;S097475591600168.
  • GSK 2016 Update on GSK’s response to the Zika virüs disease outbreak. gsk. com
  • WHO 2020 DRAFT landscape of COVID-19 candidate vaccines. who.int March 20.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Derleme
Authors

Semra Güngör This is me

Emel Örün This is me

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

AMA Güngör S, Örün E. SARS-CoV-2 Aşı Çalışmaları. Yüksek İhtisas Üniversitesi Sağlık Bilimleri Dergisi. June 2020;1(1):42-47.