Research Article
BibTex RIS Cite

Insights into the Prediction Structural, Electronic, Optic, Elastic, and Phonon Properties of Half-Heusler Compound LiAgSe via Density Functional Theory

Year 2022, , 50 - 63, 25.04.2022
https://doi.org/10.53433/yyufbed.1056381

Abstract

The structural, electronic, optic, elastic and dynamic features of LiAgSe half-Heusler structure are studied by using first principle calculations. LiAgSe half-Heusler compound is examined with the Generalized Gradient Approximation using the Density Functional Theory. The Quantum Espresso simulation program is preferred to investigate its structural, electronic and dynamic features. The ABINIT simulation program is preferred to investigate its elastic and optic properties. The electronic band structure graph of the LiAgSe crystal formed as a result of the calculation shows that this crystal has a semi-metallic structure. Optic properties such as, complex dielectric constant, extinction coefficient, reflectivity, for the volume of LiAgSe are calculated and plotted. In this study, elastic constants, Poisson's ratio and Debye Temperature values of LiAgSe half-Heusler crystal are determined. Apart from these, phonon dispersion curve graph is obtained. It has been calculated that the LiAgSe half-Heusler crystal is not dynamically stable in the ground state. However, when applied a pressure under nearly 16.396 GPa the crystal becomes stable.

References

  • Abdullah, A., Husain, M., Rahman, N., Khan, R., Iqbal, Z., Zulfiqar, S., Sohail, M., Umer, M., Murtaza, G., Khan, S. N., Khan, A., & Reshak, A. H. (2021). Computational investigation of structural, magnetic, elastic, and electronic properties of Half-Heusler ScVX (X = Si, Ge, Sn, and Pb) compounds. European Physical Journal Plus, 136, 1176. doi: 10.1140/epjp/s13360-021-02175-4
  • Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., & Kirov, A. (2006). Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221(1), 15-27. doi: 10.1524/zkri.2006.221.1.15
  • Asli, N., Dahmane, F., Mokhtari, M., Zouaneb, C., Batouche, M., Khachai, H., Srivastava, V., Naqib, S. H., Al-Douri, Y., Bouhemadou, A., & Khenata, R. (2021). Structural, electronic, magnetic and mechanical properties of the full-Heusler compounds Ni2Mn (Ge, Sn) and Mn2NiGe. Zeitschrift für Naturforschung A,76(8), 693-702. doi: 10.1515/zna-2020-0329
  • Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461. doi: 10.1126/science.1158899
  • Benndorf, C., Niehous, O., Eckert, H., & Tanko, O. (2015). 27Al and 45Sc NMR spectroscopy on ScT2Al and Sc (T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) heusler phases and superconductivity in Sc (Pd0.5Au0.5)2Al. Zeitschrift für Anorganische und Allgemeine Chemie, 641(2), 168. doi: 10.1002/zaac.201400509
  • Berger, G., & Weiss, A. (1988). Ternary intermetallic phases with Heusler-phase type structures in the system Ag-Mg-RE (RE= La, Ce, Pr, Nd, Sm). Journal of the Less-Common Metals, 142, 109-121. doi: 10.1016/0022-5088(88)90168-3
  • Boeck, J. D., Roy, W. V., Das, J., Motsnyi, V., Liu, Z., Lagae, L., Boeve, H., Dessein, K., & Borghs, G. (2002). Technology and materials issues in semiconductor-based magnetoelectronics. Semiconductor Science and Technology, 17(4), 342. doi: 10.1088/0268-1242/17/4/307
  • Casper, F., Seshadri, R., & Fesler, C. (2009). Semiconducting half-Heusler and LiGaGe structure type compounds. Physica Status Solidi A, 206(5), 1090. doi: 10.1002/pssa.200881223
  • De Groot, R. A., Mueller, F, M., Van Engen, P. G., & Buschow, K. H. J. (1983). New class of materials: half-metallic ferromagnets. Physical Review. Letter, 50(25), 2024. doi: 10.1103/PhysRevLett.50.2024.
  • Dmytriv, G. S., Pavlyuk, V. V., Pauly, H., Eckert, J., &Ehrenberg, H. (2011). New real ternary and pseudoternary phases in the Li–Au–In system. Journal of Solid State Chemistry, 184, 1328. doi: 10.1016/j.jssc.2011.03.020
  • Erden Gulebaglan, S., & Kilit Dogan, E. (2021a). Investigation of structural, electronic, and dynamic properties of half‐heusler alloys XCuB (X = Ti, Zr) by first principles calculations. Crystal Research and Technology, 56(1), 2000116. doi: 10.1002/crat.202000116
  • Erden Gulebaglan, S., & Kilit Dogan, E. (2021b). A comparison study of the structural electronic, elastic and lattice dynamic properties of ZrInAu and ZrSnPt. Zeitschrift für Naturforschung A, 76, 6, 559. doi: 10.1515/zna-2021-0014
  • Fang, T., Zhao, X., & Zhu, T. (2018). Band structures and transport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 11, 847. doi: 10.3390/ma11050847
  • Giannozzi, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Samos, L. M., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502. doi: 10.1088/0953-8984/21/39/395502
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., Sindic, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., & Allan, D. C. (2002). First-principle computation of material properties: the ABINIT software project. Computational Materials Science, 25, 478. doi: 10.1016/S0927 0256(02)00325-7
  • Graf, T., Parkin, S. S., & Fesler, C. (2010). Heusler compounds-a material class with exceptional properties. IEEE Transactions on Magnetics., 47, 367-373. doi: 10.1109/TMAG.2010.2096229
  • Gruhn, T. (2010). Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Physical Review B 82: 125210. doi: org/10.1103/PhysRevB.82.125210
  • Hadj, T., Khalfoun, H., Rached, H., Guermit, Y., Azzouz-Rached, A., & Rached, D. (2020). DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy. European Physical Journal B, 93, 214. doi: 10.1140/epjb/e2020-10204-5
  • Hassan, R., & Ur, S. C. (2020). Synthesis of FeVSb1−xSex Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties. Journal of Electronic Materials, 49, 5, 2719-2725. doi: 10.1007/s11664-019-07653-1
  • Heusler, F. (1903). Über magnetische manganlegierungen. Verhandlungen der DPG 5, 219.
  • Hill R. (1966) Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solid., 14, 95-102. doi: 10.1016/0022-5096(66)90040-8
  • Huang, L., Zhang, Q., Yuan, B., Lai, X., Yan, X., & Ren, Z. (2016). Recent progress in half-Heusler thermoelectric materials. Materials Research Bulletin, 76, 107. doi: 10.1016/J.MATERRESBULL.2015.11.032.
  • Hussain, M. K. (2018). Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds. Applied Physics A 124, 343. doi: 10.1007/s00339-018-1760-9
  • Homes, C. C., Ali, M. N., & Cava, R. J. (2015). Optical properties of the perfectly compensated semimetal WTe2. Phyical. Review B, 92(16), 161109. doi: 10.1103/PhysRevB.92.161109
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2019). Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. doi: 10.1063/1.4812323
  • Jia, K., Yang, C. L., Wang, M. S., Ma, X. G., & Yi, Y. G. (2021). First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX (X = Se, Te). Journal of Physics: Condensed Matter, 33, 095501. doi: 10.1088/1361-648X/abcbdc
  • Jolayemi, O. R., Adetunji, B. I., Ozafile, O. E., & Adebayo, G. A. (2021). Investigation of the thermoelectric properties of Lithium-Aluminium-Silicide (LiAlSi) compound from first-principles calculations. Computational Condensed Matter, 27, e00551. Doi: 10.1016/j.cocom.2021.e00551
  • Kacimi, S., Mehnane, H., & Zaoui, A. (2014). I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. Journal of Alloys and Compounds, 587: 451-458. doi: 10.1016/j.jallcom.2013.10.046
  • Kandpal, H. C., Felser, C., &Fecher, G. H. (2007). Correlation in Heusler compounds Co2YSi(Y=3d transition metal). Journal of Magnetism and Magnetic Materials, 310(2), 1626-1628. doi: 10.1016/j.jmmm.2006.10.481
  • Kilit Dogan, E., & Erden Gulebaglan, S. (2021). Some properties of LiInSi half-Heusler alloy via density functional theory. Bulletin of Materials Science, 44, 208. doi: 10.1007/s12034-021-02499-y
  • Kilit Dogan, E., & Erden Gulebaglan, S. (2022). A computational estimation on structural, electronic, elastic, optic and dynamic properties of Li2TlA (A=Sb and Bi): First-principles calculations. Materials Science in Semiconductor Processing, 138, 106302. doi: 10.1016/j.mssp.2021.106302
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations ıncluding exchange and correlation effects. Physical Review, 140, 1133. doi: 10.1103/PhysRev.140.A1133
  • Lekhal, A., Benkhelife, F. Z., Meçabıh, S., Abbar, B., & Bouhefs, B. (2016). Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases. Bulletin of Materials Science, 39(1), 195-200. doi: 10.1007/s12034-015-1124-4
  • Lin, H., Wray, L. A., Xia, Y., Xu, S., Jia, S., Cava, R. J., Bansil, A., & Hasan, M. Z. (2010). Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Materials, 9, 546-549. doi: 10.1038/nmat2771
  • Ma, T., Yang, C., Xie, Y., Sun, L., Lu, W., Wang, R., & Ren, Y. (2010). First-principles calculations of the structural, elastic, electronic and optical properties of orthorhombic LiGaS2 and LiGaSe2. Physica B: Condensed Matter, 405(1), 363-368. doi: 10.1016/j.physb.2009.08.091
  • Monkhorst, H., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phyical. Review B, 13, 5188-5192. doi: 10.1103/PhysRevB.13.5188
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi: 10.1103/PhysRevB.90.224104
  • Nye, F. J. (1995). Physical properties of crystals their representation by tensors and matrices. New York: Oxford University Press.
  • Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical ReviewB, 23, 5048. doi: org/10.1103/PhysRevB.23.5048
  • Perdew, J. P., Burke, K., &Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple. Physical Review Letter, 78, 1396. doi: org/10.1103/PhysRevLett.77.3865
  • Reuss A. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystal. Z. Angew. Math. Mech., 9, 49-58.
  • Riffat, S. B., & Ma, X. (2003). Thermoelectrics: A Review of Present and Potential Applications.Applied Thermal Engineering, 23, 913-935. doi: 10.1016/S1359-4311(03)00012-7
  • Rahman Rano, B., Syed, I. M., & Naqib, S. H. (2020). Ab initio approach to the elastic, electronic, and optical properties of MoTe2 topological Weyl semimetal. Journal of Alloys and Compounds, 829, 154522. doi: org/10.1016/j.jallcom.2020.154522
  • Ozdemir, E. G., & Merdan, Z. (2019). First principle predictions on half-metallic results of MnZrX (X= In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, O, S, Se, Te) half-Heusler compounds. Journal of Magnetism and Magnetic Materials, 491(1), 165567. doi: 10.1016/j.jmmm.2019.165567
  • Telfah, A., Essaound, S. S., Baoziz, H., Charifi, Z., Alsaad, A. M., Ahmad, M. J. A., Hergenröder, R., &Sabirianov, R. (2021). Density Functional Theory Investigation of Physical Properties of KCrZ (Z = S, Se, Te) Half-Heusler Alloys. Physica Status Solidi B, 258, 2100039. doi. 10.1002/pssb.202100039
  • Vinet, P., Ferrante, J., Smith, J. R., & Rose, J. H. (1986). A universal equation of state for solids. Journal of Physics C, 19, L467. doi: 10.1088/0022-3719/19/20/001
  • Voigt W. (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys., 274, 573-587.
  • Wang, X., Cheng, Z., &Liu, G. (2017). Largest magnetic moments in the half-heusler alloys XCrZ (X = Li, K, Rb, Cs; Z = S, Se, Te): A first-principles study. Materials, 10(9), 1078. doi. 10.3390/ma10091078
  • Winterlik, J., Fecher, G. H., Thomas, A., & Fesler, C. (2009). Superconductivity in palladium-based Heusler compounds. Physical Review B, 79, 064508. doi: 10.1103/PhysRevB.79.064508
  • Yang, J. H., & Stabler, F. R. (2009). Automotive applications of thermoelectric materials. Journal of Electronic Materials, 38,1245-1251. doi: 10.1007/s11664-009-0680-z
  • Yang, Z., Liu, Z., Sheng, J., Guo, W., Zeng, Y., Gao, P., & Ye, J. (2017). Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells. Scientific Reports, 7, 14575. doi: 10.1038/s41598-017-15300-0
  • Yin, L., Gu, C., Zhu, J., Ye, Q., Jiang, E., Wang, W., Liao, M., Yang, Z., Zeng, Y., Sheng, J., Guo, W., Yan, B., Gao, P., Ye, J., & Zhu, Y. (2019). Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. Journal of Materials Science, 54, 7789-7797. doi: 10.1007/s10853-018-03258-x
  • Zhang, M., Dai, X., Hu, H., Liu, G., Cui, Y., Liu, Z., Wang, J., & Wu, G. (2003). Search for new half-metallic ferromagnets in semiHeusler alloys NiCrM (M = P, As, Sb, S, Se and Te). Journal of Physics: Condensed Matter, 15, 7891-7899. doi: 10.1088/0953-8984/15/46/008
  • Zhang, Y., & Xu, X. (2020). Machine learning modeling of lattice constants for half-Heusler alloys. AIP Advances, 10, 045121. doi: 10.1063/5.0002448
  • Zhang, Y., Zhang, W., Yu, X., Yu, C., Liu, Z., Wu, G., & Meng, F. (2020). The structural, magnetic and electronic properties of Fe-Ni-Ga ternary Heusler alloys. Materials Science and Engineering: B, 260, 114654. doi: 0.1016/j.mseb.2020.114654
  • Zuti, I., Fabian, J., &Sarma, S. D. (2004). Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76, 323. doi: 10.1103/RevModPhys.76.323

Yoğunluk Fonksiyonel Teorisi Aracılığıyla Yarı-Heusler Bileşiği LiAgSe'nin Yapısal Elektronik Optik Elastik ve Fonon Özelliklerinin Tahmin Edilmesine İlişkin Öngörüler

Year 2022, , 50 - 63, 25.04.2022
https://doi.org/10.53433/yyufbed.1056381

Abstract

LiAgSe yarı-Heusler yapısının yapısal, elektronik, optik, elastik ve dinamik özellikleri ilk prensip hesaplamaları ile incelenmiştir. LiAgSe yarı-Heusler bileşiği, Yoğunluk Fonksiyonel Teorisi kullanılarak Genelleştirilmiş Gradient Yaklaşımı ile incelendi. Yapısal, elektronik ve dinamik özelliklerini araştırmak için Quantum Espresso simülasyon programı, elastik ve optik özelliklerini araştırmak için ise ABINIT simülasyon programı tercih edilmiştir. Hesaplama sonucunda oluşan LiAgSe kristalinin elektronik bant yapısı grafiği, bu kristalin yarı metalik bir yapıya sahip olduğunu göstermektedir. LiAgSe hacmi için kompleks dielektrik sabiti, extinction katsayısı, reflectivity, gibi optik özellikler hesaplandı ve çizildi. Bu çalışmada, yoğunluk fonksiyonel teorisi kullanılarak, LiAgSe yarı-Heusler kristalinin elastik sabitleri bulk, Poisson oranı ve Debye Sıcaklık değerleri belirlendi. Bu özelliklerin dışında fonon dağılım eğrisi LiAgSe yarı-Heusler kristalinin temel durumda dinamik olarak kararlı olmadığı, yaklaşık 16.396 GPa basınç altında kararlı bir şekilde dönüştüğü hesaplanmıştır.

References

  • Abdullah, A., Husain, M., Rahman, N., Khan, R., Iqbal, Z., Zulfiqar, S., Sohail, M., Umer, M., Murtaza, G., Khan, S. N., Khan, A., & Reshak, A. H. (2021). Computational investigation of structural, magnetic, elastic, and electronic properties of Half-Heusler ScVX (X = Si, Ge, Sn, and Pb) compounds. European Physical Journal Plus, 136, 1176. doi: 10.1140/epjp/s13360-021-02175-4
  • Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., & Kirov, A. (2006). Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221(1), 15-27. doi: 10.1524/zkri.2006.221.1.15
  • Asli, N., Dahmane, F., Mokhtari, M., Zouaneb, C., Batouche, M., Khachai, H., Srivastava, V., Naqib, S. H., Al-Douri, Y., Bouhemadou, A., & Khenata, R. (2021). Structural, electronic, magnetic and mechanical properties of the full-Heusler compounds Ni2Mn (Ge, Sn) and Mn2NiGe. Zeitschrift für Naturforschung A,76(8), 693-702. doi: 10.1515/zna-2020-0329
  • Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461. doi: 10.1126/science.1158899
  • Benndorf, C., Niehous, O., Eckert, H., & Tanko, O. (2015). 27Al and 45Sc NMR spectroscopy on ScT2Al and Sc (T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) heusler phases and superconductivity in Sc (Pd0.5Au0.5)2Al. Zeitschrift für Anorganische und Allgemeine Chemie, 641(2), 168. doi: 10.1002/zaac.201400509
  • Berger, G., & Weiss, A. (1988). Ternary intermetallic phases with Heusler-phase type structures in the system Ag-Mg-RE (RE= La, Ce, Pr, Nd, Sm). Journal of the Less-Common Metals, 142, 109-121. doi: 10.1016/0022-5088(88)90168-3
  • Boeck, J. D., Roy, W. V., Das, J., Motsnyi, V., Liu, Z., Lagae, L., Boeve, H., Dessein, K., & Borghs, G. (2002). Technology and materials issues in semiconductor-based magnetoelectronics. Semiconductor Science and Technology, 17(4), 342. doi: 10.1088/0268-1242/17/4/307
  • Casper, F., Seshadri, R., & Fesler, C. (2009). Semiconducting half-Heusler and LiGaGe structure type compounds. Physica Status Solidi A, 206(5), 1090. doi: 10.1002/pssa.200881223
  • De Groot, R. A., Mueller, F, M., Van Engen, P. G., & Buschow, K. H. J. (1983). New class of materials: half-metallic ferromagnets. Physical Review. Letter, 50(25), 2024. doi: 10.1103/PhysRevLett.50.2024.
  • Dmytriv, G. S., Pavlyuk, V. V., Pauly, H., Eckert, J., &Ehrenberg, H. (2011). New real ternary and pseudoternary phases in the Li–Au–In system. Journal of Solid State Chemistry, 184, 1328. doi: 10.1016/j.jssc.2011.03.020
  • Erden Gulebaglan, S., & Kilit Dogan, E. (2021a). Investigation of structural, electronic, and dynamic properties of half‐heusler alloys XCuB (X = Ti, Zr) by first principles calculations. Crystal Research and Technology, 56(1), 2000116. doi: 10.1002/crat.202000116
  • Erden Gulebaglan, S., & Kilit Dogan, E. (2021b). A comparison study of the structural electronic, elastic and lattice dynamic properties of ZrInAu and ZrSnPt. Zeitschrift für Naturforschung A, 76, 6, 559. doi: 10.1515/zna-2021-0014
  • Fang, T., Zhao, X., & Zhu, T. (2018). Band structures and transport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 11, 847. doi: 10.3390/ma11050847
  • Giannozzi, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Samos, L. M., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502. doi: 10.1088/0953-8984/21/39/395502
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., Sindic, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., & Allan, D. C. (2002). First-principle computation of material properties: the ABINIT software project. Computational Materials Science, 25, 478. doi: 10.1016/S0927 0256(02)00325-7
  • Graf, T., Parkin, S. S., & Fesler, C. (2010). Heusler compounds-a material class with exceptional properties. IEEE Transactions on Magnetics., 47, 367-373. doi: 10.1109/TMAG.2010.2096229
  • Gruhn, T. (2010). Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Physical Review B 82: 125210. doi: org/10.1103/PhysRevB.82.125210
  • Hadj, T., Khalfoun, H., Rached, H., Guermit, Y., Azzouz-Rached, A., & Rached, D. (2020). DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy. European Physical Journal B, 93, 214. doi: 10.1140/epjb/e2020-10204-5
  • Hassan, R., & Ur, S. C. (2020). Synthesis of FeVSb1−xSex Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties. Journal of Electronic Materials, 49, 5, 2719-2725. doi: 10.1007/s11664-019-07653-1
  • Heusler, F. (1903). Über magnetische manganlegierungen. Verhandlungen der DPG 5, 219.
  • Hill R. (1966) Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solid., 14, 95-102. doi: 10.1016/0022-5096(66)90040-8
  • Huang, L., Zhang, Q., Yuan, B., Lai, X., Yan, X., & Ren, Z. (2016). Recent progress in half-Heusler thermoelectric materials. Materials Research Bulletin, 76, 107. doi: 10.1016/J.MATERRESBULL.2015.11.032.
  • Hussain, M. K. (2018). Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds. Applied Physics A 124, 343. doi: 10.1007/s00339-018-1760-9
  • Homes, C. C., Ali, M. N., & Cava, R. J. (2015). Optical properties of the perfectly compensated semimetal WTe2. Phyical. Review B, 92(16), 161109. doi: 10.1103/PhysRevB.92.161109
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2019). Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. doi: 10.1063/1.4812323
  • Jia, K., Yang, C. L., Wang, M. S., Ma, X. G., & Yi, Y. G. (2021). First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX (X = Se, Te). Journal of Physics: Condensed Matter, 33, 095501. doi: 10.1088/1361-648X/abcbdc
  • Jolayemi, O. R., Adetunji, B. I., Ozafile, O. E., & Adebayo, G. A. (2021). Investigation of the thermoelectric properties of Lithium-Aluminium-Silicide (LiAlSi) compound from first-principles calculations. Computational Condensed Matter, 27, e00551. Doi: 10.1016/j.cocom.2021.e00551
  • Kacimi, S., Mehnane, H., & Zaoui, A. (2014). I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. Journal of Alloys and Compounds, 587: 451-458. doi: 10.1016/j.jallcom.2013.10.046
  • Kandpal, H. C., Felser, C., &Fecher, G. H. (2007). Correlation in Heusler compounds Co2YSi(Y=3d transition metal). Journal of Magnetism and Magnetic Materials, 310(2), 1626-1628. doi: 10.1016/j.jmmm.2006.10.481
  • Kilit Dogan, E., & Erden Gulebaglan, S. (2021). Some properties of LiInSi half-Heusler alloy via density functional theory. Bulletin of Materials Science, 44, 208. doi: 10.1007/s12034-021-02499-y
  • Kilit Dogan, E., & Erden Gulebaglan, S. (2022). A computational estimation on structural, electronic, elastic, optic and dynamic properties of Li2TlA (A=Sb and Bi): First-principles calculations. Materials Science in Semiconductor Processing, 138, 106302. doi: 10.1016/j.mssp.2021.106302
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations ıncluding exchange and correlation effects. Physical Review, 140, 1133. doi: 10.1103/PhysRev.140.A1133
  • Lekhal, A., Benkhelife, F. Z., Meçabıh, S., Abbar, B., & Bouhefs, B. (2016). Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases. Bulletin of Materials Science, 39(1), 195-200. doi: 10.1007/s12034-015-1124-4
  • Lin, H., Wray, L. A., Xia, Y., Xu, S., Jia, S., Cava, R. J., Bansil, A., & Hasan, M. Z. (2010). Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Materials, 9, 546-549. doi: 10.1038/nmat2771
  • Ma, T., Yang, C., Xie, Y., Sun, L., Lu, W., Wang, R., & Ren, Y. (2010). First-principles calculations of the structural, elastic, electronic and optical properties of orthorhombic LiGaS2 and LiGaSe2. Physica B: Condensed Matter, 405(1), 363-368. doi: 10.1016/j.physb.2009.08.091
  • Monkhorst, H., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phyical. Review B, 13, 5188-5192. doi: 10.1103/PhysRevB.13.5188
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi: 10.1103/PhysRevB.90.224104
  • Nye, F. J. (1995). Physical properties of crystals their representation by tensors and matrices. New York: Oxford University Press.
  • Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical ReviewB, 23, 5048. doi: org/10.1103/PhysRevB.23.5048
  • Perdew, J. P., Burke, K., &Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple. Physical Review Letter, 78, 1396. doi: org/10.1103/PhysRevLett.77.3865
  • Reuss A. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystal. Z. Angew. Math. Mech., 9, 49-58.
  • Riffat, S. B., & Ma, X. (2003). Thermoelectrics: A Review of Present and Potential Applications.Applied Thermal Engineering, 23, 913-935. doi: 10.1016/S1359-4311(03)00012-7
  • Rahman Rano, B., Syed, I. M., & Naqib, S. H. (2020). Ab initio approach to the elastic, electronic, and optical properties of MoTe2 topological Weyl semimetal. Journal of Alloys and Compounds, 829, 154522. doi: org/10.1016/j.jallcom.2020.154522
  • Ozdemir, E. G., & Merdan, Z. (2019). First principle predictions on half-metallic results of MnZrX (X= In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, O, S, Se, Te) half-Heusler compounds. Journal of Magnetism and Magnetic Materials, 491(1), 165567. doi: 10.1016/j.jmmm.2019.165567
  • Telfah, A., Essaound, S. S., Baoziz, H., Charifi, Z., Alsaad, A. M., Ahmad, M. J. A., Hergenröder, R., &Sabirianov, R. (2021). Density Functional Theory Investigation of Physical Properties of KCrZ (Z = S, Se, Te) Half-Heusler Alloys. Physica Status Solidi B, 258, 2100039. doi. 10.1002/pssb.202100039
  • Vinet, P., Ferrante, J., Smith, J. R., & Rose, J. H. (1986). A universal equation of state for solids. Journal of Physics C, 19, L467. doi: 10.1088/0022-3719/19/20/001
  • Voigt W. (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys., 274, 573-587.
  • Wang, X., Cheng, Z., &Liu, G. (2017). Largest magnetic moments in the half-heusler alloys XCrZ (X = Li, K, Rb, Cs; Z = S, Se, Te): A first-principles study. Materials, 10(9), 1078. doi. 10.3390/ma10091078
  • Winterlik, J., Fecher, G. H., Thomas, A., & Fesler, C. (2009). Superconductivity in palladium-based Heusler compounds. Physical Review B, 79, 064508. doi: 10.1103/PhysRevB.79.064508
  • Yang, J. H., & Stabler, F. R. (2009). Automotive applications of thermoelectric materials. Journal of Electronic Materials, 38,1245-1251. doi: 10.1007/s11664-009-0680-z
  • Yang, Z., Liu, Z., Sheng, J., Guo, W., Zeng, Y., Gao, P., & Ye, J. (2017). Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells. Scientific Reports, 7, 14575. doi: 10.1038/s41598-017-15300-0
  • Yin, L., Gu, C., Zhu, J., Ye, Q., Jiang, E., Wang, W., Liao, M., Yang, Z., Zeng, Y., Sheng, J., Guo, W., Yan, B., Gao, P., Ye, J., & Zhu, Y. (2019). Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. Journal of Materials Science, 54, 7789-7797. doi: 10.1007/s10853-018-03258-x
  • Zhang, M., Dai, X., Hu, H., Liu, G., Cui, Y., Liu, Z., Wang, J., & Wu, G. (2003). Search for new half-metallic ferromagnets in semiHeusler alloys NiCrM (M = P, As, Sb, S, Se and Te). Journal of Physics: Condensed Matter, 15, 7891-7899. doi: 10.1088/0953-8984/15/46/008
  • Zhang, Y., & Xu, X. (2020). Machine learning modeling of lattice constants for half-Heusler alloys. AIP Advances, 10, 045121. doi: 10.1063/5.0002448
  • Zhang, Y., Zhang, W., Yu, X., Yu, C., Liu, Z., Wu, G., & Meng, F. (2020). The structural, magnetic and electronic properties of Fe-Ni-Ga ternary Heusler alloys. Materials Science and Engineering: B, 260, 114654. doi: 0.1016/j.mseb.2020.114654
  • Zuti, I., Fabian, J., &Sarma, S. D. (2004). Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76, 323. doi: 10.1103/RevModPhys.76.323
There are 56 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Sinem Erden Gülebağlan 0000-0001-9446-2211

Publication Date April 25, 2022
Submission Date January 11, 2022
Published in Issue Year 2022

Cite

APA Erden Gülebağlan, S. (2022). Insights into the Prediction Structural, Electronic, Optic, Elastic, and Phonon Properties of Half-Heusler Compound LiAgSe via Density Functional Theory. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 50-63. https://doi.org/10.53433/yyufbed.1056381