Eklemeli imalat teknolojisi geleneksel imalat yöntemlerine kıyasla sağladığı avantajlar sayesinde son yıllarda medikal alanda yaygın olarak kullanılmaktadır. Eklemeli imalat teknolojisi ile implant yapımında üstün biyouyumluluk ve mekanik özelliklere sahip olan CoCr alaşımları tercih edilmektedir. Ancak implantasyondan sonra implant ve doku arasındaki uyum süresi oldukça uzundur. Bu sorunu gidermek için implant yüzeyinin geliştirilmesi amaçlanmıştır. Bu çalışmada bir eklemeli imalat yöntemi olan seçici lazer ergitme (SLM-Selective laser melting) ve geleneksel imalat yöntemi olan (Döküm) ile üretilen CoCr alaşımları üzerine yüzey özelliklerinin geliştirilmesi amacıyla HAp kaplamalar yapılmıştır. Numunelerin üretim yönteminin ve farklı konsantrasyonlarda HAp (%1, %3, %5, %7, %9) ile hazırlanan çözeltilerin kaplama morfolojisine etkisi SEM analizi yapılarak incelenmiştir. Ayrıca HAp partiküllerinin varlığı, EDS ve XRD analizleri ile desteklenmiştir. Deney sonuçları eklemeli imalat ile üretilen numunelerde geleneksel imalat ile üretilenlere kıyasla daha yüksek kalitede kaplama yapısı oluştuğunu göstermiştir.
Adeleke, S., Ramesh, S., Bushroa, A., Ching, Y., Sopyan, I., Maleque, M., Krishnasamy, S., Chandran, H., Misran, H., & Sutharsini, U. (2018). The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Ceramics International, 1802-1811. doi: 10.1016/j.ceramint.2017.10.114.
Aminatun, R. A., Yusuf, Y.. & Suhariningsih. (2015). Synthesis and characterization of hydroxyapatite layer on cobalt alloys through dip coating method as a prosthetic bone implant candidate. Journal of Optoelectronic and Biomedical Materials, 2015(7), 11-18.
Ann Wennerberg, T. A. (2009). Effects of titanium surface topography on bone integration: a systematic review. Clinical oral implants research, 20, 172-184. doi:10.1111/j.1600-0501.2009.01775.x
Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21, 667-681. doi:10.1016/S0142-9612(99)00242-2
Asri, (2016). A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. Journal of the Mechanical Behavior of Biomedical Materials, 57, 95-108. doi:10.1016/j.jmbbm.2015.11.031
Awasthi, S., Pandey, S. K., Arunan, E., & Srivastava, C. (2021). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. Journal of Materials Chemistry B, 9, 228-249. doi:10.1039/D0TB02407D
Baciu, E.-R., Cimpoeșu, R., Vițalariu, A., Baciu, C., Cimpoeșu, N., Sodor, A., Zegan G., & Murariu, A. (2021). Surface analysis of 3D (SLM) Co–Cr–W dental metallic materials. Applied Sciences, 11, 255. doi:10.3390/app11010255
Kwok, C. T., Wong, P. K., Cheng, F. T. & Man, H.C. (2009). Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science, 255, 6736-6744. doi:10.1016/j.apsusc.2009.02.086
Mohseni, E., Zalnezhad, E., & Bushroa A. R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238-257. doi:10.1016/j.ijadhadh.2013.09.030
Fadli, A., Kristin, F., Arini, P., Wisrayeti, Yenti, S. R., & Irianty, R. S. (2021). Hydroxyapatite Coating On 316L Stainless Steel Using Dip Coating Technique. Journal of Physics: Conference Series, 2049, 012047. doi:10.1088/1742-6596/2049/1/012047
Grandfield, K., Palmquist, A., Gonçalves, S., Taylor, A., Taylor, M., Emanuelsson, L., Thomsen, P., & Engqvist, H. (2011). Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. Journal of Materials Science: Materials in Medicine, 22, 899–906. doi:10.1007/s10856-011-4253-3
Hong, J. H., & Yeoh, F. Y. (2020). Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Materialstoday Proceedings, 29, 196-201. doi:10.1016/j.matpr.2020.05.543
Breme, J., Zhou, Y., & Groh L. (1995). Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials, 16, 239-244. doi:10.1016/0142-9612(95)92123-N
Kien, P. T., Quan, T. N., & Anh, L. H. (2021). Coating characteristic of hydroxyapatite on titanium substrates via hydrothermal treatment. Coatings, 11, 1226. doi:10.3390/coatings11101226
Kim, H. W., Knowles, J. C., & Kim, H. E. (2004). Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials, 25, 1279- 1287. doi:10.1016/j.biomaterials.2003.07.003
Lacefield, W. (1988). Hydroxyapatite coatings. Annals of the New York Academy of Sciences, 523, 72- 80. doi:10.1111/j.1749-6632.1988.tb38501.x
León, M. R., García, L. C., & Özcan, M. (2019). Implant-prosthodontic discrepancy of complete-arch cobalt-chromium ımplant frameworks manufactured. International Journal of Oral & Maxillofacial Implants, 34. doi:10.11607/jomi.6739
Wang, L. N., & Luo, J. L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62, 1076-1086. doi:10.1016/j.matchar.2011.08.002
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54, 397-425. doi:10.1016/j.pmatsci.2008.06.004
Naderi, A., Zhang, B., Belgodere, J. A., Sunder, K., & Palardy, G. (2021). Improved biocompatible, flexible mesh composites for ımplant applications via hydroxyapatite coating with potential for 3-dimensional extracellular matrix network and bone regeneration. ACS Applied Materials & Interfaces, 13, 26824−26840. doi:10.1021/acsami.1c09034
Pereira, T., Kennedy, J. V., & Potgieter, J. (2019). A comparison of traditional manufacturing vs additive manufacturing, the best method for job. Procedia Manufacturing, 30, 11-18. doi:10.1016/j.promfg.2019.02.003
Simka, W., Krząkała, A., M.Korotin, D., Zhidkov, I. S., Kurmaev, E. Z., Cholakh, S. O., Kuna K., Dercz G., Michalska J., Suchanek K., & Gorewoda, T. (2013). Modification of a Ti–Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus. Electrochimica Acta, 96, 180-190. doi:10.1016/j.electacta.2013.02.102
Song, B., Zhao, X., Li, S., Han, C., Wei, Q., Wen, S., Liu J., & Shi, Y. (2015). Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, 10, 111-125. doi:10.1007/s11465- 015-0341-2
Tilton, M., Lewis, G. S., & Manogharan, G. P. (2018). Additive manufacturing of orthopedic ımplants. Springer, Cham: Orthopedic Biomaterials. doi:10.1007/978-3-319-89542-0_2
Tonelli, L., Fortunato, A., & Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): effect of laser energy density on microstructure, surface morphology, and hardness. Journal of Manufacturing Processes, 52, 106-119. doi:10.1016/j.jmapro.2020.01.052
Xiao, X. F., & Liu, R. F. (2006). Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Materials Letters, 60, 2627-2632. doi:10.1016/j.matlet.2006.01.048
Xu, Z. L., Sun, J., Liu, C. S., & Wei, J. (2009). Effect of hydroxyapatite nanoparticles of different concentrations on rat osteoblast. Materials Science Forum, 610, 1364-1369. doi:10.4028/www.scientific.net/MSF.610-613.1364
Yang, J., Lu, X., Blawert, C., Di, S., & Zheludkevich, M. L. (2017). Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surface and Coatings Technology, 319, 359-369. doi:10.1016/j.surfcoat.2017.04.001
Zhang, S., Li, Y., Hao, L., Xu, T., Wei, Q., & Shi, Y. (2014). Metal-ceramic bond mechanism of the Co-Cr alloy denture with original rough surface produced by selective laser melting. Chinese Journal of Mechanical Engineering, 27, 69-78. doi:10.3901/CJME.2014.01.069
Zheng, L., Gong, W., Tang, Y., Ma, G., Zheng, J., Chen, S. Z., & Li, W. H. (2018). Electrophoretic- deposited HAP nano-layer as a QCM-D sensor coating: effects of suspension. Biosurface and Biotribology, 4, 79-84. doi:10.1049/bsbt.2018.0
Comparison of Hydroxyapatite (HAp) Coating on CoCr Alloy Surfaces Produced by Additive Manufacturing and Conventional Manufacturing Method
Additive manufacturing technology has been widely used in the medical field in recent years, thanks to the advantages it provides compared to traditional manufacturing methods. CoCr alloys, which have superior biocompatibility and mechanical properties, are preferred in implant construction with additive manufacturing technology. However, after implantation, the adaptation period between the implant and the tissue is quite long. To overcome this problem, it is aimed to improve the implant surface. In this study, HAp coatings were made on CoCr alloys produced by selective laser melting (SLM-Selective laser melting), which is an additive manufacturing method, and CoCr alloys, which are produced with a traditional manufacturing method (Casting). The effects of the production method of the samples and the solutions prepared with different concentrations of HAp (1%, 3%, 5%, 7%, 9%) on the coating morphology were investigated by SEM analysis. In addition, the presence of HAp particles was supported by EDS and XRD analyzes. The test results showed that higher quality coating structure was formed in the samples produced by additive manufacturing compared to those produced by conventional manufacturing.
Adeleke, S., Ramesh, S., Bushroa, A., Ching, Y., Sopyan, I., Maleque, M., Krishnasamy, S., Chandran, H., Misran, H., & Sutharsini, U. (2018). The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Ceramics International, 1802-1811. doi: 10.1016/j.ceramint.2017.10.114.
Aminatun, R. A., Yusuf, Y.. & Suhariningsih. (2015). Synthesis and characterization of hydroxyapatite layer on cobalt alloys through dip coating method as a prosthetic bone implant candidate. Journal of Optoelectronic and Biomedical Materials, 2015(7), 11-18.
Ann Wennerberg, T. A. (2009). Effects of titanium surface topography on bone integration: a systematic review. Clinical oral implants research, 20, 172-184. doi:10.1111/j.1600-0501.2009.01775.x
Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21, 667-681. doi:10.1016/S0142-9612(99)00242-2
Asri, (2016). A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. Journal of the Mechanical Behavior of Biomedical Materials, 57, 95-108. doi:10.1016/j.jmbbm.2015.11.031
Awasthi, S., Pandey, S. K., Arunan, E., & Srivastava, C. (2021). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. Journal of Materials Chemistry B, 9, 228-249. doi:10.1039/D0TB02407D
Baciu, E.-R., Cimpoeșu, R., Vițalariu, A., Baciu, C., Cimpoeșu, N., Sodor, A., Zegan G., & Murariu, A. (2021). Surface analysis of 3D (SLM) Co–Cr–W dental metallic materials. Applied Sciences, 11, 255. doi:10.3390/app11010255
Kwok, C. T., Wong, P. K., Cheng, F. T. & Man, H.C. (2009). Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science, 255, 6736-6744. doi:10.1016/j.apsusc.2009.02.086
Mohseni, E., Zalnezhad, E., & Bushroa A. R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238-257. doi:10.1016/j.ijadhadh.2013.09.030
Fadli, A., Kristin, F., Arini, P., Wisrayeti, Yenti, S. R., & Irianty, R. S. (2021). Hydroxyapatite Coating On 316L Stainless Steel Using Dip Coating Technique. Journal of Physics: Conference Series, 2049, 012047. doi:10.1088/1742-6596/2049/1/012047
Grandfield, K., Palmquist, A., Gonçalves, S., Taylor, A., Taylor, M., Emanuelsson, L., Thomsen, P., & Engqvist, H. (2011). Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. Journal of Materials Science: Materials in Medicine, 22, 899–906. doi:10.1007/s10856-011-4253-3
Hong, J. H., & Yeoh, F. Y. (2020). Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Materialstoday Proceedings, 29, 196-201. doi:10.1016/j.matpr.2020.05.543
Breme, J., Zhou, Y., & Groh L. (1995). Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials, 16, 239-244. doi:10.1016/0142-9612(95)92123-N
Kien, P. T., Quan, T. N., & Anh, L. H. (2021). Coating characteristic of hydroxyapatite on titanium substrates via hydrothermal treatment. Coatings, 11, 1226. doi:10.3390/coatings11101226
Kim, H. W., Knowles, J. C., & Kim, H. E. (2004). Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials, 25, 1279- 1287. doi:10.1016/j.biomaterials.2003.07.003
Lacefield, W. (1988). Hydroxyapatite coatings. Annals of the New York Academy of Sciences, 523, 72- 80. doi:10.1111/j.1749-6632.1988.tb38501.x
León, M. R., García, L. C., & Özcan, M. (2019). Implant-prosthodontic discrepancy of complete-arch cobalt-chromium ımplant frameworks manufactured. International Journal of Oral & Maxillofacial Implants, 34. doi:10.11607/jomi.6739
Wang, L. N., & Luo, J. L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62, 1076-1086. doi:10.1016/j.matchar.2011.08.002
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54, 397-425. doi:10.1016/j.pmatsci.2008.06.004
Naderi, A., Zhang, B., Belgodere, J. A., Sunder, K., & Palardy, G. (2021). Improved biocompatible, flexible mesh composites for ımplant applications via hydroxyapatite coating with potential for 3-dimensional extracellular matrix network and bone regeneration. ACS Applied Materials & Interfaces, 13, 26824−26840. doi:10.1021/acsami.1c09034
Pereira, T., Kennedy, J. V., & Potgieter, J. (2019). A comparison of traditional manufacturing vs additive manufacturing, the best method for job. Procedia Manufacturing, 30, 11-18. doi:10.1016/j.promfg.2019.02.003
Simka, W., Krząkała, A., M.Korotin, D., Zhidkov, I. S., Kurmaev, E. Z., Cholakh, S. O., Kuna K., Dercz G., Michalska J., Suchanek K., & Gorewoda, T. (2013). Modification of a Ti–Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus. Electrochimica Acta, 96, 180-190. doi:10.1016/j.electacta.2013.02.102
Song, B., Zhao, X., Li, S., Han, C., Wei, Q., Wen, S., Liu J., & Shi, Y. (2015). Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, 10, 111-125. doi:10.1007/s11465- 015-0341-2
Tilton, M., Lewis, G. S., & Manogharan, G. P. (2018). Additive manufacturing of orthopedic ımplants. Springer, Cham: Orthopedic Biomaterials. doi:10.1007/978-3-319-89542-0_2
Tonelli, L., Fortunato, A., & Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): effect of laser energy density on microstructure, surface morphology, and hardness. Journal of Manufacturing Processes, 52, 106-119. doi:10.1016/j.jmapro.2020.01.052
Xiao, X. F., & Liu, R. F. (2006). Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Materials Letters, 60, 2627-2632. doi:10.1016/j.matlet.2006.01.048
Xu, Z. L., Sun, J., Liu, C. S., & Wei, J. (2009). Effect of hydroxyapatite nanoparticles of different concentrations on rat osteoblast. Materials Science Forum, 610, 1364-1369. doi:10.4028/www.scientific.net/MSF.610-613.1364
Yang, J., Lu, X., Blawert, C., Di, S., & Zheludkevich, M. L. (2017). Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surface and Coatings Technology, 319, 359-369. doi:10.1016/j.surfcoat.2017.04.001
Zhang, S., Li, Y., Hao, L., Xu, T., Wei, Q., & Shi, Y. (2014). Metal-ceramic bond mechanism of the Co-Cr alloy denture with original rough surface produced by selective laser melting. Chinese Journal of Mechanical Engineering, 27, 69-78. doi:10.3901/CJME.2014.01.069
Zheng, L., Gong, W., Tang, Y., Ma, G., Zheng, J., Chen, S. Z., & Li, W. H. (2018). Electrophoretic- deposited HAP nano-layer as a QCM-D sensor coating: effects of suspension. Biosurface and Biotribology, 4, 79-84. doi:10.1049/bsbt.2018.0
Erener, G., Gezer, İ., & Bahçe, E. (2022). Eklemeli İmalat ve Geleneksel İmalat Yöntemi ile Üretilen CoCr Alaşımı Yüzeylerde Hidroksiapatit (HAp) Kaplamanın Karşılaştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 39-49. https://doi.org/10.53433/yyufbed.1056997