Research Article
BibTex RIS Cite

Investigation of Seismic Behavior of Base Isolated Structures Under Near and Far Fault Earthquakes by Wavelet Transform

Year 2022, , 257 - 268, 30.08.2022
https://doi.org/10.53433/yyufbed.1072327

Abstract

In this study, the seismic behaviour of a structure with seismic base isolators under the near and far fault earthquakes have been investigated by continuous wavelet transform. Seismic responses of the building type structure idealized as a lumped mass-stiffness model with elastomeric isolators which have been placed at the base level have been obtained under near and far fault earthquakes. The most important property of near and far fault earthquakes is the difference in their frequency content. In order to develop a more detailed perspective on the displacement time responses obtained in the time domain, these responses have been presented in the scale (1/frequency)-time plane with the continuous wavelet transform using the Morlet wavelet. The information that could not be obtained from the displacement-time responses has been achieved from the wavelet transform and the differences in the seismic responses in terms of frequency contents have been observed. It has been clarified that during near-fault earthquakes, high frequency contents are spread over a wider time period. In addition, the correlation of displacement responses obtained under the effect of near and far fault earthquakes was measured with the wavelet coherence method and it has been concluded that the behaviours under near- and far-fault earthquakes have low correlation.

References

  • Cohen, A., & Kovacevic, J. (1996). Wavelets: The mathematical background. Proceedings of the IEEE, 84(4), 514-522. doi: 10.1109/5.488697
  • Diaferio, M., & Foti, D. (2016). Mechanical behavior of buildings subjected to impulsive motions. Bulletin of Earthquake Engineering, 14(3), 849–862. doi: 10.1007/s10518-015-9848-5
  • Jangid, R. S., & Kelly, J. M. (2001). Base isolation for near-fault motions. Earthquake engineering & Structural Dynamics, 30(5), 691-707. doi: 10.1002/eqe.31
  • Kandemir-Mazanoglu, E. C., & Mazanoglu, K. (2017). An optimization study for viscous dampers between adjacent buildings. Mechanical Systems and Signal Processing, 89, 88-96. doi:10.1016/j.ymssp.2016.06.001
  • Liu, T., Luan, Y., & Zhong, W. (2012). Earthquake responses of clusters of building structures caused by a near-field thrust fault. Soil Dynamics and Earthquake Engineering, 42, 56-70. doi: 10.1016/j.soildyn.2012.06.002
  • Makris, N. (2019). Seismic isolation: Early history. Earthquake Engineering & Structural Dynamics, 48(2), 269-283. doi: 10.1002/eqe.3124
  • Mazza, F. (2018). Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes. Soil Dynamics and Earthquake Engineering, 108, 111-129. doi: 10.1016/j.soildyn.2017.11.030
  • Mazza, F., Mazza, M., & Vulcano, A. (2018). Base-isolation systems for the seismic retrofitting of rc framed buildings with soft-storey subjected to near-fault earthquakes. Soil Dynamics and Earthquake Engineering, 109, 209-221. doi: 10.1016/j.soildyn.2018.02.025
  • Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M. (2004). Wavelet Toolbox, The MathWorks.
  • Nazarnezhad, T., & Naderpour, H. (2021). Probabilistic damage evaluation of base-isolated reinforced concrete structures under near-fault pulse-like bidirectional seismic excitations. Structures, 32, 1156-1170. doi: 10.1016/j.istruc.2021.02.025
  • PEER Ground Motion Database. (2022). PEER Ground Motion Database, https://ngawest2.berkeley.edu/ Erişim tarihi: 01.02.2022.
  • Pelekis, I., Madabhushi, G. S., & DeJong, M. J. (2018). Seismic performance of buildings with structural and foundation rocking in centrifuge testing. Earthquake Engineering & Structural Dynamics, 47(12), 2390-2409. doi: 10.1002/eqe.3089
  • Pietrosanti, D., De Angelis, M., & Giaralis, A. (2021). Experimental seismic performance assessment and numerical modelling of nonlinear inerter vibration absorber (IVA)-equipped base isolated structures tested on shaking table. Earthquake Engineering & Structural Dynamics, 50(10), 2732-2753. doi: 10.1002/eqe.3469
  • Providakis, C. P. (2008). Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations. Engineering structures, 30(5), 1187-1198. doi: 10.1016/j.engstruct.2007.07.020
  • Saha, A., & Mishra, S. K. (2021). Amplification of seismic demands in inter-storey-isolated buildings subjected to near fault pulse type ground motions. Soil Dynamics and Earthquake Engineering, 147, 106771. doi: 10.1016/j.soildyn.2021.106771
  • Sehhati, R., Rodriguez-Marek, A., ElGawady, M., & Cofer, W.F. (2011). Effects of near-fault ground motions and equivalent pulses on multi-story structures. Engineering Structures, 33, 767–779. doi: 10.1016/j.engstruct.2010.11.032
  • Shama, A. (2012, Mart). Spectrum Compatible Earthquake Ground Motions by Morlet Wavelet. Structural Congress 2012, Chicago, Illinois, United States.
  • The Mathworks Inc., MATLAB: The language of technical computing, Natick, MA, USA, http://www.mathworks.com/
  • Zhao, L., Du, Y., Wang, H., & Li, W. (2015). Study on nonlinear detection and identification for rubber isolation bearing. Vibroengineering Procedia, 5, 399-404.
  • Zhao, H. & Zhang, Y. (2022). CWT-based method for extracting seismic velocity dispersion. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. doi: 10.1109/LGRS.2021.3056610

Sismik Taban İzolatörlü Yapıların Yakın ve Uzak Fay Depremleri Altındaki Davranışlarının Dalgacık Dönüşümü ile İncelenmesi

Year 2022, , 257 - 268, 30.08.2022
https://doi.org/10.53433/yyufbed.1072327

Abstract

Çalışmada sismik taban izolatörlü bir yapının yakın ve uzak fay depremleri etkisindeki sismik davranışları sürekli dalgacık dönüşümü yöntemi ile incelenmiştir. Toplanmış kütle-rijitlik modeli kullanılarak idealize edilmiş bina türü bir yapının, taban seviyesine kauçuk izolatör yerleştirilerek yakın ve uzak fay depremleri etkisi altında sismik tepkileri elde edilmiştir. Yakın ve uzak fay depremlerinin en önemli özelliği frekans içeriklerindeki farklılıktır. Zaman tanım alanında elde edilen yer değiştirme tepkilerine daha detaylı bir bakış açısı geliştirmek amacıyla bu tepkiler Morlet dalgacığı kullanılarak sürekli dalgacık dönüşümü ile ölçek (1/frekans)-zaman düzleminde sunulmuştur. Yer değiştirme-zaman grafiklerinden elde edilemeyen bilgiler dalgacık dönüşümlerinden elde edilmiş ve sismik tepkilerin frekans içeriklerindeki farklılıklar net olarak gözlenmiştir. Yakın-fay depremleri altında, yüksek frekans içeriklerinin daha geniş bir zaman dilimine yayıldığı tespit edilmiştir. Buna ek olarak dalgacık uyumu yöntemi ile yakın ve uzak fay depremleri etkisi altında elde edilmiş yer değiştirme tepkilerinin korelasyonu ölçülmüş ve yakın ve uzak-fay depremleri altında davranışların korelasyonlarının düşük olduğu sonucuna varılmıştır.

References

  • Cohen, A., & Kovacevic, J. (1996). Wavelets: The mathematical background. Proceedings of the IEEE, 84(4), 514-522. doi: 10.1109/5.488697
  • Diaferio, M., & Foti, D. (2016). Mechanical behavior of buildings subjected to impulsive motions. Bulletin of Earthquake Engineering, 14(3), 849–862. doi: 10.1007/s10518-015-9848-5
  • Jangid, R. S., & Kelly, J. M. (2001). Base isolation for near-fault motions. Earthquake engineering & Structural Dynamics, 30(5), 691-707. doi: 10.1002/eqe.31
  • Kandemir-Mazanoglu, E. C., & Mazanoglu, K. (2017). An optimization study for viscous dampers between adjacent buildings. Mechanical Systems and Signal Processing, 89, 88-96. doi:10.1016/j.ymssp.2016.06.001
  • Liu, T., Luan, Y., & Zhong, W. (2012). Earthquake responses of clusters of building structures caused by a near-field thrust fault. Soil Dynamics and Earthquake Engineering, 42, 56-70. doi: 10.1016/j.soildyn.2012.06.002
  • Makris, N. (2019). Seismic isolation: Early history. Earthquake Engineering & Structural Dynamics, 48(2), 269-283. doi: 10.1002/eqe.3124
  • Mazza, F. (2018). Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes. Soil Dynamics and Earthquake Engineering, 108, 111-129. doi: 10.1016/j.soildyn.2017.11.030
  • Mazza, F., Mazza, M., & Vulcano, A. (2018). Base-isolation systems for the seismic retrofitting of rc framed buildings with soft-storey subjected to near-fault earthquakes. Soil Dynamics and Earthquake Engineering, 109, 209-221. doi: 10.1016/j.soildyn.2018.02.025
  • Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M. (2004). Wavelet Toolbox, The MathWorks.
  • Nazarnezhad, T., & Naderpour, H. (2021). Probabilistic damage evaluation of base-isolated reinforced concrete structures under near-fault pulse-like bidirectional seismic excitations. Structures, 32, 1156-1170. doi: 10.1016/j.istruc.2021.02.025
  • PEER Ground Motion Database. (2022). PEER Ground Motion Database, https://ngawest2.berkeley.edu/ Erişim tarihi: 01.02.2022.
  • Pelekis, I., Madabhushi, G. S., & DeJong, M. J. (2018). Seismic performance of buildings with structural and foundation rocking in centrifuge testing. Earthquake Engineering & Structural Dynamics, 47(12), 2390-2409. doi: 10.1002/eqe.3089
  • Pietrosanti, D., De Angelis, M., & Giaralis, A. (2021). Experimental seismic performance assessment and numerical modelling of nonlinear inerter vibration absorber (IVA)-equipped base isolated structures tested on shaking table. Earthquake Engineering & Structural Dynamics, 50(10), 2732-2753. doi: 10.1002/eqe.3469
  • Providakis, C. P. (2008). Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations. Engineering structures, 30(5), 1187-1198. doi: 10.1016/j.engstruct.2007.07.020
  • Saha, A., & Mishra, S. K. (2021). Amplification of seismic demands in inter-storey-isolated buildings subjected to near fault pulse type ground motions. Soil Dynamics and Earthquake Engineering, 147, 106771. doi: 10.1016/j.soildyn.2021.106771
  • Sehhati, R., Rodriguez-Marek, A., ElGawady, M., & Cofer, W.F. (2011). Effects of near-fault ground motions and equivalent pulses on multi-story structures. Engineering Structures, 33, 767–779. doi: 10.1016/j.engstruct.2010.11.032
  • Shama, A. (2012, Mart). Spectrum Compatible Earthquake Ground Motions by Morlet Wavelet. Structural Congress 2012, Chicago, Illinois, United States.
  • The Mathworks Inc., MATLAB: The language of technical computing, Natick, MA, USA, http://www.mathworks.com/
  • Zhao, L., Du, Y., Wang, H., & Li, W. (2015). Study on nonlinear detection and identification for rubber isolation bearing. Vibroengineering Procedia, 5, 399-404.
  • Zhao, H. & Zhang, Y. (2022). CWT-based method for extracting seismic velocity dispersion. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. doi: 10.1109/LGRS.2021.3056610
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Çağda Kandemir 0000-0002-9190-7120

Publication Date August 30, 2022
Submission Date February 12, 2022
Published in Issue Year 2022

Cite

APA Kandemir, E. Ç. (2022). Sismik Taban İzolatörlü Yapıların Yakın ve Uzak Fay Depremleri Altındaki Davranışlarının Dalgacık Dönüşümü ile İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 257-268. https://doi.org/10.53433/yyufbed.1072327