Let V(RG) denote the normalized unit group of the group ring RG of a group G over a ring R. The concept of G-nilpotent unit in a commutative group ring has been defined in (Danchev, 2012). In this study, some necessary and sufficient conditions for a normalized unit group in a commutative group ring of a direct product group G×H to consist only of G×H-nilpotent units have been given and especially some results which are related to groups G×C_3 and G×C_4 have been introduced where C_3 and C_4 are cyclic groups of orders 3 and 4 respectively. In this context, we can say that the paper extends the results in (Danchev, 2012). At the end, an open problem is served as a future work.
V(RG), bir R halkası üzerindeki bir G grubunun RG grup halkasının normalleştirilmiş birim grubunu göstersin. Değişmeli bir grup halkasındaki G-nilpotent birimsel kavramı (Danchev, 2012)'de tanımlanmıştır. Bu çalışmada da, bir G×H direkt çarpım grubunun değişmeli grup halkasında normallenmiş birimsel elemanlar grubunun sadece G×H-nilpotent birimsel elemanlardan oluşabilmesi için bazı gerek ve yeter şartlar verilmiştir. Ayrıca özel olarak G×C_3 ve G×C_4 gruplarına dair bazı sonuçlar sunulmuştur ki burada C_3 ve C_4 sırasıyla 3 ve 4 mertebeli devirli gruplardır. Bu bağlamda, makale (Danchev, 2012)’deki sonuçları genişletir diyebiliriz. Sonunda, gelecek çalışma için açık problem sunulmuştur.
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Early Pub Date | April 29, 2023 |
Publication Date | April 30, 2023 |
Submission Date | April 2, 2022 |
Published in Issue | Year 2023 |