Research Article
BibTex RIS Cite

Bizmut Tabanlı Bazı Alaşımların Radyasyon Zırhlama Kapasitelerinin İncelenmesi

Year 2023, , 92 - 105, 30.04.2023
https://doi.org/10.53433/yyufbed.1140507

Abstract

Sunulan çalışmada, 0.060 MeV ila 2.614 MeV foton enerjileri aralığında 18 farklı enerjide bizmut tabanlı bazı alaşımların gama radyasyonu zırhlama kapasiteleri incelenmiştir. Farklı oranlarda bizmut içeren Bi50/Pb25/Cd12.5/Sn12.5, Bi50/Pb28/Sn22, Bi55.5/Pb44.5, Bi58/Sn42 alaşımlarının gama radyasyonu azaltma kapasiteleri belirtilen enerjilerde WinXCOM programı, GEANT4 ve FLUKA simülasyon programları yardımı ile incelenmiştir. Gama radyasyonu zırhlama özelliklerini incelemek için BiPbCdSn, BiPbSn, BiPb ve BiSn olarak kodlanan alaşımların kütle ve lineer azaltma katsayıları, yarı ve onda-bir kalınlık değerleri, ortalama serbest yolları ve etkin atom numaraları parametreleri belirtilen enerji aralığında hesaplanmıştır. µ/ρ değerlerinin düşük enerjilerde daha yüksek olduğu görülmüştür ve WinXCOM’a göre BiPbCdSn, BiPbSn, BiPb ve BiSn için 0.060 MeV enerjideki µ/ρ değerleri sırasıyla 5.4663, 5.4392, 5.1380 ve 5.7924 şeklindedir. BiPb kodlu alaşımın çalışılan diğer alaşımlara göre gama radyasyonu zırhlama kapasitesinin daha iyi olduğu gözlemlenmiştir.

References

  • Abdel-latif M. A., & Kassab, M. M. (2022). Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys. Applied Radiation Isotopes, 186, 110263. doi:10.1016/j.apradiso.2022.110263
  • Agar, O. (2018). Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral. Radiochimica Acta, 106, 12. doi:10.1515/ract-2018-2981
  • Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., ... & Geant4 Collaboration. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 506(3), 250-303. doi:10.1016/S0168-9002(03)01368-8
  • Akkaş, A. (2016). Determination of the tenth and half value layer thickness of concretes with different densities. Acta Physica Polonica A, 129(4), 770-772. doi:10.12693/APhysPolA.129.770
  • Akleyev, A. V. (2016). Normal tissue reactions to chronic radiation exposure in man. Radiation Protection Dosimetry, 171(1), 107–116. doi:10.1093/rpd/ncw207
  • Akman, F., Kaçal, M. R., Sayyed, M. I., Karataş, H. A. (2019a). Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782(25), 315-322. doi:10.1016/j.jallcom.2018.12.221
  • Akman, F., Sayyed, M. I., Kaçal, M. R., Tekin, H. O. (2019b). Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV–1333 keV. Journal of Alloys and Compounds, 772, 516-524. doi:10.1016/j.jallcom.2018.09.177
  • Akman, F., Ogul, H., Ozkan, I., Kaçal, M. R., Agar, O., Polat, H., Kamuran Dilsiz, K. (2022). Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54(1), 283-29. doi:10.1016/j.net.2021.07.006
  • Al-Ghamdi, H., AshokKumar, A. Jecong, J. F. M., Almuqrina, H. A., Tishkevich, D. I., Sayyed, M. I. (2022). Optical and gamma ray shielding behavior of PbO–B2O3–CuO–CaO glasses. Journal of Materials Research and Technology, 18, 2494-2505. doi:10.1016/j.jmrt.2022.03.120
  • Al-Hadeethi, Y., Sayyed, M. I., Raffah, B. M., Kumar, A. (2022). Physical, structural and gamma ray shielding behaviour of PbO-CuO-CaO-B2O3 glasses. Optik, 258, 168881. doi:10.1016/j.ijleo.2022.168881
  • Al-Hadeethi, Y., Sayyed, M. I., Rahman, Y. S. (2020). Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics International, 46(2), 2055-2062. doi:10.1016/j.ceramint.2019.09.185
  • ALMisned, G., Akman, F., AbuShanab, W. S., Tekin, H. O., Kaçal M. R., Issa, A. M. S., Polat, H., Oltulu, M., Ene, A., Zakaly M. H. H. (2021). Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (rpe) and shielding properties for alpha, proton, neutron, and gamma radiations. Polymers, 13(18), 3157. doi:10.3390/polym13183157
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653. doi:10.1016/j.net.2019.08.017
  • Azeez, M. O., Ahmad, S., Al-Dulaijan, S. U., Maslehuddin M., Naqvi A. A. (2019). Radiation shielding performance of heavy-weight concrete mixtures. Construction and Building Materials. 224(10) 284-291. doi:10.1016/j.conbuildmat.2019.07.077
  • Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., Mairani, A., Salad, P. R., Smirnov, G., Vlachoudis, V. (2014). The FLUKA code: Developments and challenges for high energy and medical applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049
  • Chinthakayala, S. K., Gadige, P., Kollipara, S. V., Ramadurai, G. (2022). Gamma radiation shielding studies on highly dense barium bismuth borate glasses. Applied Glass Science, 13(2), 211-222. doi:10.1111/ijag.16554
  • Eke, C., Agar, O., Segebade, C., Boztosun, I. (2017). Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochimica Acta, 105 (10), 851-863. doi:10.1515/ract-2016-2690
  • Elias, J. A., Montes, E., Torres-Castro, A., Wiechers, C., Gomez-Solis, C., Vega-Carrillo, H. R., Sosa, M. A., & Vallejo, M. A. (2022). Mn, Cu and Cr nanoparticles in Li2B4O7 glass: Radiation shielding and optical properties. Radiation Physics and Chemistry, 194, 110037. doi:10.1016/j.radphyschem.2022.110037
  • Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. doi:10.1016/j.radphyschem.2004.04.040
  • Gilys, L., Griškonis, E., Griškeviˇcius, P., & Adliene, D. (2022). Lead free multilayered polymer composites for radiation shielding. Polymers, 14(9), 1696. doi:10.3390/polym14091696
  • GoodFellow. (2023). https://www.goodfellow.com/uk/en-gb/alloy Erişim tarihi : 15.09.2022
  • Hamad, Kh., M., Mhareb, M. H. A., Sayyed, M. I., Alajerami, Y. S. M., Alsharhan, R., Khandaker, M. U. (2022a). Novel efficient alloys for ionizing radiation shielding applications: A theoretical investigation. Radiation Physics and Chemistry, 110181. doi:10.1016/j.radphyschem.2022.110181
  • Hamad, R. M., Hamad, Kh. M., Dwaikat, N., & Ziq, Kh., A. (2022b). Assessment of FexSe0.5Te0.5 alloy properties for ionizing radiation shielding applications: An experimental study. Applied Physics A, 128:574. doi:10.1007/s00339-022-05721-8
  • Levet, A., Kavaz, E., & Özdemir, Y. (2020). An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. Journal of Alloys and Compounds, 819, 152946. doi:10.1016/j.jallcom.2019.152946
  • Makarious, A. S., Bashter, I. I., Abdo, A. E. S., Azim, M. S. A., Kansouh, W. A. (1996). On the utilization of heavy concrete for radiation shielding. Annals of Nuclear Energy, 23(3), 195-206. doi:10.1016/0306-4549(95)00021-1
  • Manjunatha, H. C. (2017). A study of gamma attenuation parameters in polymethylmethacrylate and Kapton. Radiation Physics and Chemistry, 137, 254–259. doi:10.1016/j.radphyschem.2016.01.024
  • Manohara, S. R., Hanagodimath, S. M., Thind, K. S., Gerward, L. (2008). On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906–3912. doi:10.1016/j.nimb.2008.06.034
  • Mansour, A., Sayyed, M. I., Mahmoud, K. A., Şakar, E., & Kovaleva, E. G. (2020). Modified halloysite minerals for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13(1), 94-101. doi.org/10.1080/16878507.2019.1699680
  • McCaffrey, J. P., Shen, H., Downton, B. E., & Mainegra-Hing, E. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics, 34(2), 530-537. doi:10.1118/1.2426404
  • Mhareb, M. H. A, Slimani, Y., Alajerami, Y. S., Sayyed, M. I., Lacomme, E., Almessiere, M. A. (2020). Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceramics International, 46(18), 28877-28886. doi:10.1016/j.ceramint.2020.08.055
  • Özkalaycı, F., Kaçal, M. R., Polat, H., Agar, O., Almousa, N., & Akman, F. (2022). Lead-free Sb-based polymer composite for γ-ray shielding purposes. Radiochimica Acta, 110, 5. doi:10.1515/ract-2022-0020
  • Öztürk, O., Karaburç, Ş. N., Saydan, M., & Keskin, Ü. S. (2022). High rate X-ray radiation shielding ability of cement-based composites incorporating strontium sulfate (SrSO4) minerals. Kerntechnik, 87(1), 115-124. doi:10.1515/kern-2021-0029
  • Prabhu, S., Bubbly, G., & Gudennavar, S. B. (2022). X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality. Polymer Reviews, 1-43. doi.org/10.1080/15583724.2022.2067867
  • Reda, A. M., & El-Daly, A. A. (2022). Novel metallic Bi-Pb–Cd-Ag alloys for shielding against neutrons and gamma rays. Physica Scripta, 97(6), 065304. doi:10.1088/1402-41896/ac6e9b
  • Saad, M., ALMohiy, H., Alqahtani, M. S., Alshihri, A. A., & Shalaby, R. M. (2022). Study of structural, physical, characteristics and radiation shielding parameters of Bi50-Pb40-Sn10 and Bi40-Pb40-Sn10-Cd10 alloys used for radiation therapy. Radiation Effects and Defects in Solids, 177(5-6), 545-555. doi:10.1080/10420150.2022.2063125
  • Singh, T., Kaur, A., Sharma, J., & Singh, P. S. (2018). Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Engineering Science and Technology, an International Journal, 21(5), 1078-1085. doi:10.1016/j.jestch.2018.06.012
  • Skuld, (2023). X-ray Absorption Edges. http://skuld.bmsc.washington.edu/scatter/AS_periodic.html Erişim tarihi: 15.09.2022
  • Turhan, M. F., Akman, F., Taşer, A., Dilsiz, K., Oğul, H., Kaçal, M. R., & Agar, O. (2022). Gamma radiation shielding performance of CuxAg(1-x)-alloys: Experimental, theoretical and simulation results. Progress in Nuclear Energy, 143, 104036. doi.org/10.1016/j.pnucene.2021.104036
  • Yorgun, N. Y. (2019a). Gamma-ray shielding parameters of Li2B4O7 glasses: Undoped and doped magnetite, siderite and Zinc-Borate minerals cases. Radiochimica Acta, 107(8), 755-765. doi:10.1515/ract-2019-0014
  • Yorgun, N. Y. (2019b). Gamma-ray shielding properties of lithium borate glass doped with colemanit mineral. BEU Journal of Science 8 (3), 762-771. doi:10.17798/bitlisfen.525527

Investigation of Radiation Shielding Capacities of Some Bismuth-Based Alloys

Year 2023, , 92 - 105, 30.04.2023
https://doi.org/10.53433/yyufbed.1140507

Abstract

In the present study, gamma radiation shielding capacities of some bismuth-based alloys in the photon energies range of 0.060 MeV to 2.614 MeV at 18 different energies were investigated. Gamma radiation attenuation capacities of Bi50/Pb25/Cd12.5/Sn12.5, Bi50/Pb28/Sn22, Bi55.5/Pb44.5, Bi58/Sn42 alloys containing different amounts of bismuth were investigated with the help of WinXCOM program, GEANT4 and FLUKA simulation programs at the specified energies. In order to investigate the gamma radiation shielding properties, the mass and linear attenuation coefficients, half and tenth value layers, mean free paths and effective atomic numbers parameters of the alloys coded as BiPbCdSn, BiPbSn, BiPb and BiSn were calculated in the specified energy range. µ/ρ values were found to be higher at low energies and according to WinXCOM, µ/ρ values at 0.060 MeV energies for BiPbCdSn, BiPbSn, BiPb and BiSn are 5.4663, 5.4392, 5.1380 and 5.7924, respectively. It has been observed that the gamma radiation shielding capacity of the BiPb coded alloy is better than the other studied alloys.

References

  • Abdel-latif M. A., & Kassab, M. M. (2022). Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys. Applied Radiation Isotopes, 186, 110263. doi:10.1016/j.apradiso.2022.110263
  • Agar, O. (2018). Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral. Radiochimica Acta, 106, 12. doi:10.1515/ract-2018-2981
  • Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., ... & Geant4 Collaboration. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 506(3), 250-303. doi:10.1016/S0168-9002(03)01368-8
  • Akkaş, A. (2016). Determination of the tenth and half value layer thickness of concretes with different densities. Acta Physica Polonica A, 129(4), 770-772. doi:10.12693/APhysPolA.129.770
  • Akleyev, A. V. (2016). Normal tissue reactions to chronic radiation exposure in man. Radiation Protection Dosimetry, 171(1), 107–116. doi:10.1093/rpd/ncw207
  • Akman, F., Kaçal, M. R., Sayyed, M. I., Karataş, H. A. (2019a). Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782(25), 315-322. doi:10.1016/j.jallcom.2018.12.221
  • Akman, F., Sayyed, M. I., Kaçal, M. R., Tekin, H. O. (2019b). Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV–1333 keV. Journal of Alloys and Compounds, 772, 516-524. doi:10.1016/j.jallcom.2018.09.177
  • Akman, F., Ogul, H., Ozkan, I., Kaçal, M. R., Agar, O., Polat, H., Kamuran Dilsiz, K. (2022). Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54(1), 283-29. doi:10.1016/j.net.2021.07.006
  • Al-Ghamdi, H., AshokKumar, A. Jecong, J. F. M., Almuqrina, H. A., Tishkevich, D. I., Sayyed, M. I. (2022). Optical and gamma ray shielding behavior of PbO–B2O3–CuO–CaO glasses. Journal of Materials Research and Technology, 18, 2494-2505. doi:10.1016/j.jmrt.2022.03.120
  • Al-Hadeethi, Y., Sayyed, M. I., Raffah, B. M., Kumar, A. (2022). Physical, structural and gamma ray shielding behaviour of PbO-CuO-CaO-B2O3 glasses. Optik, 258, 168881. doi:10.1016/j.ijleo.2022.168881
  • Al-Hadeethi, Y., Sayyed, M. I., Rahman, Y. S. (2020). Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics International, 46(2), 2055-2062. doi:10.1016/j.ceramint.2019.09.185
  • ALMisned, G., Akman, F., AbuShanab, W. S., Tekin, H. O., Kaçal M. R., Issa, A. M. S., Polat, H., Oltulu, M., Ene, A., Zakaly M. H. H. (2021). Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (rpe) and shielding properties for alpha, proton, neutron, and gamma radiations. Polymers, 13(18), 3157. doi:10.3390/polym13183157
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653. doi:10.1016/j.net.2019.08.017
  • Azeez, M. O., Ahmad, S., Al-Dulaijan, S. U., Maslehuddin M., Naqvi A. A. (2019). Radiation shielding performance of heavy-weight concrete mixtures. Construction and Building Materials. 224(10) 284-291. doi:10.1016/j.conbuildmat.2019.07.077
  • Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., Mairani, A., Salad, P. R., Smirnov, G., Vlachoudis, V. (2014). The FLUKA code: Developments and challenges for high energy and medical applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049
  • Chinthakayala, S. K., Gadige, P., Kollipara, S. V., Ramadurai, G. (2022). Gamma radiation shielding studies on highly dense barium bismuth borate glasses. Applied Glass Science, 13(2), 211-222. doi:10.1111/ijag.16554
  • Eke, C., Agar, O., Segebade, C., Boztosun, I. (2017). Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochimica Acta, 105 (10), 851-863. doi:10.1515/ract-2016-2690
  • Elias, J. A., Montes, E., Torres-Castro, A., Wiechers, C., Gomez-Solis, C., Vega-Carrillo, H. R., Sosa, M. A., & Vallejo, M. A. (2022). Mn, Cu and Cr nanoparticles in Li2B4O7 glass: Radiation shielding and optical properties. Radiation Physics and Chemistry, 194, 110037. doi:10.1016/j.radphyschem.2022.110037
  • Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. doi:10.1016/j.radphyschem.2004.04.040
  • Gilys, L., Griškonis, E., Griškeviˇcius, P., & Adliene, D. (2022). Lead free multilayered polymer composites for radiation shielding. Polymers, 14(9), 1696. doi:10.3390/polym14091696
  • GoodFellow. (2023). https://www.goodfellow.com/uk/en-gb/alloy Erişim tarihi : 15.09.2022
  • Hamad, Kh., M., Mhareb, M. H. A., Sayyed, M. I., Alajerami, Y. S. M., Alsharhan, R., Khandaker, M. U. (2022a). Novel efficient alloys for ionizing radiation shielding applications: A theoretical investigation. Radiation Physics and Chemistry, 110181. doi:10.1016/j.radphyschem.2022.110181
  • Hamad, R. M., Hamad, Kh. M., Dwaikat, N., & Ziq, Kh., A. (2022b). Assessment of FexSe0.5Te0.5 alloy properties for ionizing radiation shielding applications: An experimental study. Applied Physics A, 128:574. doi:10.1007/s00339-022-05721-8
  • Levet, A., Kavaz, E., & Özdemir, Y. (2020). An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. Journal of Alloys and Compounds, 819, 152946. doi:10.1016/j.jallcom.2019.152946
  • Makarious, A. S., Bashter, I. I., Abdo, A. E. S., Azim, M. S. A., Kansouh, W. A. (1996). On the utilization of heavy concrete for radiation shielding. Annals of Nuclear Energy, 23(3), 195-206. doi:10.1016/0306-4549(95)00021-1
  • Manjunatha, H. C. (2017). A study of gamma attenuation parameters in polymethylmethacrylate and Kapton. Radiation Physics and Chemistry, 137, 254–259. doi:10.1016/j.radphyschem.2016.01.024
  • Manohara, S. R., Hanagodimath, S. M., Thind, K. S., Gerward, L. (2008). On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906–3912. doi:10.1016/j.nimb.2008.06.034
  • Mansour, A., Sayyed, M. I., Mahmoud, K. A., Şakar, E., & Kovaleva, E. G. (2020). Modified halloysite minerals for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13(1), 94-101. doi.org/10.1080/16878507.2019.1699680
  • McCaffrey, J. P., Shen, H., Downton, B. E., & Mainegra-Hing, E. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics, 34(2), 530-537. doi:10.1118/1.2426404
  • Mhareb, M. H. A, Slimani, Y., Alajerami, Y. S., Sayyed, M. I., Lacomme, E., Almessiere, M. A. (2020). Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceramics International, 46(18), 28877-28886. doi:10.1016/j.ceramint.2020.08.055
  • Özkalaycı, F., Kaçal, M. R., Polat, H., Agar, O., Almousa, N., & Akman, F. (2022). Lead-free Sb-based polymer composite for γ-ray shielding purposes. Radiochimica Acta, 110, 5. doi:10.1515/ract-2022-0020
  • Öztürk, O., Karaburç, Ş. N., Saydan, M., & Keskin, Ü. S. (2022). High rate X-ray radiation shielding ability of cement-based composites incorporating strontium sulfate (SrSO4) minerals. Kerntechnik, 87(1), 115-124. doi:10.1515/kern-2021-0029
  • Prabhu, S., Bubbly, G., & Gudennavar, S. B. (2022). X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality. Polymer Reviews, 1-43. doi.org/10.1080/15583724.2022.2067867
  • Reda, A. M., & El-Daly, A. A. (2022). Novel metallic Bi-Pb–Cd-Ag alloys for shielding against neutrons and gamma rays. Physica Scripta, 97(6), 065304. doi:10.1088/1402-41896/ac6e9b
  • Saad, M., ALMohiy, H., Alqahtani, M. S., Alshihri, A. A., & Shalaby, R. M. (2022). Study of structural, physical, characteristics and radiation shielding parameters of Bi50-Pb40-Sn10 and Bi40-Pb40-Sn10-Cd10 alloys used for radiation therapy. Radiation Effects and Defects in Solids, 177(5-6), 545-555. doi:10.1080/10420150.2022.2063125
  • Singh, T., Kaur, A., Sharma, J., & Singh, P. S. (2018). Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Engineering Science and Technology, an International Journal, 21(5), 1078-1085. doi:10.1016/j.jestch.2018.06.012
  • Skuld, (2023). X-ray Absorption Edges. http://skuld.bmsc.washington.edu/scatter/AS_periodic.html Erişim tarihi: 15.09.2022
  • Turhan, M. F., Akman, F., Taşer, A., Dilsiz, K., Oğul, H., Kaçal, M. R., & Agar, O. (2022). Gamma radiation shielding performance of CuxAg(1-x)-alloys: Experimental, theoretical and simulation results. Progress in Nuclear Energy, 143, 104036. doi.org/10.1016/j.pnucene.2021.104036
  • Yorgun, N. Y. (2019a). Gamma-ray shielding parameters of Li2B4O7 glasses: Undoped and doped magnetite, siderite and Zinc-Borate minerals cases. Radiochimica Acta, 107(8), 755-765. doi:10.1515/ract-2019-0014
  • Yorgun, N. Y. (2019b). Gamma-ray shielding properties of lithium borate glass doped with colemanit mineral. BEU Journal of Science 8 (3), 762-771. doi:10.17798/bitlisfen.525527
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Meryem Yılmaz 0000-0001-7513-4001

İlhami Erkoyuncu 0000-0003-1639-5062

Hatice Gürel Özdemir 0000-0002-6590-2334

İskender Demirkol 0000-0002-8065-6717

Mustafa Recep Kaçal 0000-0002-3183-5516

Ferdi Akman 0000-0002-8838-1762

Early Pub Date April 29, 2023
Publication Date April 30, 2023
Submission Date July 6, 2022
Published in Issue Year 2023

Cite

APA Yılmaz, M., Erkoyuncu, İ., Özdemir, H. G., Demirkol, İ., et al. (2023). Bizmut Tabanlı Bazı Alaşımların Radyasyon Zırhlama Kapasitelerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 92-105. https://doi.org/10.53433/yyufbed.1140507