Research Article
BibTex RIS Cite

Biyolojik Yöntemle Üretilmiş Gümüş Nanopartiküllerin In Vitro Koşullarda Digitalis purpurea Kallus ve Kök Oluşumları Üzerine Etkilerinin İncelenmesi

Year 2023, , 583 - 590, 31.08.2023
https://doi.org/10.53433/yyufbed.1143944

Abstract

Gümüş nanopartikülleri teknolojinin farklı alanlarında sıklıkla kullanılmaktadırlar. Biyosistemler üzerinde de önemli ve faydalı etkileri bulunmaktadır. Ancak, etkileri yeterli derecede çalışılmamıştır. Biyo-AgNP’lerin in vitro koşullardaki bitki dokularının ve hücrelerinin gelişimi üzerinde arttırıcı etkileri bulunmaktadır. Bu sebeple, yüksek fiyatlı bitki büyüme düzenleyicilerine alternatif olarak kullanılabilirler. Bu çalışmanın amacı, Digitalis purpurea gövde eksplantlarında farklı konsantrasyonlardaki (0-30 mg/L) biyo-AgNP’lerin etkilerini incelemektir. Bu amaçla, kallus ve kök oluşumları ve eksplant kararmaları izlenmiştir. Biyo-AgNP’lerin kallus oluşumuna etkisi olumsuzdur. 1 mg/L biyo-AgNP içeren besin ortamı hariç, kallus oluşum yüzdelerinin hepsi kontrol grubundan daha azdır. Kök oluşum yüzdeleri, 15 ve 20 mg/L biyo-AgNP içeren besin ortamlarında (sırasıyla %42.22 ve %46.67) kontrole göre (%35.56) daha yüksek bulunmuştur. Kallus oluşumlarının tersine, kök oluşumları kararmadan olumsuz etkilenmemiştir. Bu sonuçlar in vitro koşullarda hücre çoğalması ve doku rejenerasyonunun biyo-AgNP’lerden ve onların konsantrasyon yoğunluğundan farklı şekilde etkilendiğini göstermektedir.

Supporting Institution

---

Project Number

---

Thanks

---

References

  • Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. International Journal of Molecular Science, 13(8), 9923 - 9941. doi:10.3390/ijms13089923
  • Begum, S., Zahid, A., Khan, T., Khan, N.Z. & Ali, W. (2020). Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica. Physiology and Molecular Biology of Plants, 26(8), 1739–1750. doi:10.1007/s12298-020-00851-w
  • Cuong, D. M., Du, P. C., Tung, H. T., Ngan, T. H. M., Luan, V. Q., Phong, T. H., … &, Nhu, D. T. (2021). Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis—a valuable medicinal plant. Plant Cell, Tissue and Organ Culture, 146, 577–588. doi:10.1007/s11240-021-02095-2
  • Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2012;2, 15. doi:10.5772/55741
  • Huong, B. T. T., Xuan, T. D., Trung, K. H., Ha, T. T. T., Duong, V. X., Khanh, T. D., & Gioi, D. H. (2021). Influences of silver nanoparticles in vitro morphogenesis of speciality king banana (Musa ssp.) in Vietnam. Plant Cell Biotechnology and Molecular Biology, 22(33-34), 163-175.
  • Jograna, M. B, Patil, D. S., & Kotwal, S. W. (2020) Digitalis species a potent herbal drug: A review on their pharmacognosy and pharmacological activities. Journal of Current Pharmaceutical Research; Satara, 10(4), 3821-3831.
  • Jones, A. M. P., & Saxena, P. K. (2013). Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A Novel approach to reduce oxidative browning in plant tissue culture. Plos One, 8(10), e76802. doi:10.1371/journal.pone.0076802
  • Kumar, V., Singh, D. K., Mohan, S., Bano, D., Gundampati, R. K. & Hasan, S. H. (2017). Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. Journal of Photochemistry & Photobiology B: Biology, 168, 67–77. doi:10.1016/j.jphotobiol.2017.01.022
  • Lloyd, G. B., & McCown, B. H. (1980). Commercial-feasible micropropagation of mountain laurel-Kalmia latifolia by use of shoot-tip culture. Proceedings of International Plant Propagators Society, 30, 421–427.
  • Nartop, P. (2017). Biyosentetik gümüş nanopartiküllerinin Pyracantha coccinea bitkisinin gövde eksplantlarının yüzey sterilizasyonunda kullanımı. Pamukkale Üniversitesi Muhendislik Bilimleri Dergisi, 23(6), 759-761. doi:10.5505/pajes.2016.04809
  • Nartop, P. (2018a). Chapter 9 - Engineering of biomass accumulation and secondary metabolite production in plant cell and tissue cultures. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 169-194). Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-12-812689-9.00009-1
  • Nartop, P. (2018b). Effects of surface sterilization with green synthesized silver nanoparticles on Lamiaceae seeds. IET Nanobiotechnology, 12(5), 663–668. doi:10.1049/iet-nbt.2017.0195
  • Nartop, P. (2018c). Green sterilization of Rosmarinus officinalis L. stem surfaces with silver nanoparticles synthesized using Rubia tinctorum L. cell culture extracts. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 411-414. doi:10.1007/s40995-016-0065-0
  • Nartop, P. (2019). Silver nanoparticles: Ecofriendly surface sterilization of plant seeds in different shapes and sizes. Journal of Animal and Plant Sciences, 29(2), 453-460.
  • Nartop, P., & Günbeldek, Z. (2020). Chapter 4. Impact of green synthesised silver nanoparticles on In Vitro-grown Lavandula officinalis plantlets. In A. Adler (Ed.), Plant Science Research and Practices, The Lamiaceae Family, An Overview (pp. 181-210). New York, USA: Nova Science Publishers. ISBN: 9781536170788.
  • Nartop, P., Altan-Duman, A., & Titrek, A. (2021). Modelling of in vitro biomass production of Digitalis purpurea under the effects of biosynthetic silver nanoparticles. Iranian Journal of Science and Technology, Transaction A: Science, 45, 775-783. doi:10.1007/s40995-021-01105-4
  • Nartop, P., Çetin, B. N., & Zaidan, G. (2023). Dose-dependent effects of bio-AgNPs on Rubia tinctorum callus and root biomass. Iranian Journal of Science, 47, 337-345. doi:10.1007/s40995-023-01425-7
  • Patil, J. G., Ahire, M. L., Nitnaware, K. M., Panda, S., Bhatt, V. P., Kishor, P. B. K., & Nikam, T. D. (2013). In vitro propagation and production of cardiotonic glycosides in shoot cultures of D.purpurea L. by elicitation and precursor feeding. Applied Microbiology and Biotechnology, 97(6), 2379–239. doi:10.1007/s00253-012-4489-y
  • Perez-Alonso, N., Martin, R., Capote, A., Perez, A., Hernandez-Diaz, E. K., Rojas, L., … & Chong-Perez, B. (2018). Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Industrial Crops and Production, 116, 259-266. doi:10.1016/j.indcrop.2018.02.067
  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947–1955. doi:10.1016/S1001-0742(12)60301-5
  • Sinha, S. N., & Paul, D. (2014). Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common Indian spices. International Journal of Green Herbal Chemistry, 3(2), 401-408.
  • Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436. doi:10.1002/bit.24570
  • Tran, Q. H., Nguyen, V. Q., & Le, A-T. (2013). Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 033001. doi:10.1088/2043-6262/4/3/033001
  • Yasin, S., Liu, L., & Yao, J. (2013). Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. Journal of Fiber Bioengineering and Informatics, 6(1), 77–84. doi:10.3993/jfbi03201307

Investigation of Biologically Synthetized Silver Nanoparticles’ Effects on Callus and Root Formations of D. purpurea in In Vitro Conditions

Year 2023, , 583 - 590, 31.08.2023
https://doi.org/10.53433/yyufbed.1143944

Abstract

Silver nanoparticles are frequently used in many areas of technology. They also have some important and beneficial impacts on biosystems. However, their effects are not studied sufficiently. Bio-AgNPs have boosting effect on growth of plant tissues and cells in in vitro conditions. Therefore, they can be used as an alternative for expensive plant growth regulators. This study investigates the effects of different bio-AgNP concentrations (0-30 mg/L) on Digitalis purpurea stem explants. For this purpose, callus and root formations and explant browning were observed. Bio-AgNPs had negative effects on callus formations. Callus formation percentages were lower than the control except the medium supplemented with 1 mg/L bio-AgNP. Root formation percentages were found higher than the control (35.56%) at 15 and 20 mg/L bio-AgNP concentrations (42.22% and 46.67%, respectively). Contrary to callus formations, browning did not negatively affect root formations. These results showed that cell proliferation and tissue regeneration in in vitro conditions were affected distinctively by bio-AgNPs and their concentrations.

Project Number

---

References

  • Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. International Journal of Molecular Science, 13(8), 9923 - 9941. doi:10.3390/ijms13089923
  • Begum, S., Zahid, A., Khan, T., Khan, N.Z. & Ali, W. (2020). Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica. Physiology and Molecular Biology of Plants, 26(8), 1739–1750. doi:10.1007/s12298-020-00851-w
  • Cuong, D. M., Du, P. C., Tung, H. T., Ngan, T. H. M., Luan, V. Q., Phong, T. H., … &, Nhu, D. T. (2021). Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis—a valuable medicinal plant. Plant Cell, Tissue and Organ Culture, 146, 577–588. doi:10.1007/s11240-021-02095-2
  • Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2012;2, 15. doi:10.5772/55741
  • Huong, B. T. T., Xuan, T. D., Trung, K. H., Ha, T. T. T., Duong, V. X., Khanh, T. D., & Gioi, D. H. (2021). Influences of silver nanoparticles in vitro morphogenesis of speciality king banana (Musa ssp.) in Vietnam. Plant Cell Biotechnology and Molecular Biology, 22(33-34), 163-175.
  • Jograna, M. B, Patil, D. S., & Kotwal, S. W. (2020) Digitalis species a potent herbal drug: A review on their pharmacognosy and pharmacological activities. Journal of Current Pharmaceutical Research; Satara, 10(4), 3821-3831.
  • Jones, A. M. P., & Saxena, P. K. (2013). Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A Novel approach to reduce oxidative browning in plant tissue culture. Plos One, 8(10), e76802. doi:10.1371/journal.pone.0076802
  • Kumar, V., Singh, D. K., Mohan, S., Bano, D., Gundampati, R. K. & Hasan, S. H. (2017). Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. Journal of Photochemistry & Photobiology B: Biology, 168, 67–77. doi:10.1016/j.jphotobiol.2017.01.022
  • Lloyd, G. B., & McCown, B. H. (1980). Commercial-feasible micropropagation of mountain laurel-Kalmia latifolia by use of shoot-tip culture. Proceedings of International Plant Propagators Society, 30, 421–427.
  • Nartop, P. (2017). Biyosentetik gümüş nanopartiküllerinin Pyracantha coccinea bitkisinin gövde eksplantlarının yüzey sterilizasyonunda kullanımı. Pamukkale Üniversitesi Muhendislik Bilimleri Dergisi, 23(6), 759-761. doi:10.5505/pajes.2016.04809
  • Nartop, P. (2018a). Chapter 9 - Engineering of biomass accumulation and secondary metabolite production in plant cell and tissue cultures. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 169-194). Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-12-812689-9.00009-1
  • Nartop, P. (2018b). Effects of surface sterilization with green synthesized silver nanoparticles on Lamiaceae seeds. IET Nanobiotechnology, 12(5), 663–668. doi:10.1049/iet-nbt.2017.0195
  • Nartop, P. (2018c). Green sterilization of Rosmarinus officinalis L. stem surfaces with silver nanoparticles synthesized using Rubia tinctorum L. cell culture extracts. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 411-414. doi:10.1007/s40995-016-0065-0
  • Nartop, P. (2019). Silver nanoparticles: Ecofriendly surface sterilization of plant seeds in different shapes and sizes. Journal of Animal and Plant Sciences, 29(2), 453-460.
  • Nartop, P., & Günbeldek, Z. (2020). Chapter 4. Impact of green synthesised silver nanoparticles on In Vitro-grown Lavandula officinalis plantlets. In A. Adler (Ed.), Plant Science Research and Practices, The Lamiaceae Family, An Overview (pp. 181-210). New York, USA: Nova Science Publishers. ISBN: 9781536170788.
  • Nartop, P., Altan-Duman, A., & Titrek, A. (2021). Modelling of in vitro biomass production of Digitalis purpurea under the effects of biosynthetic silver nanoparticles. Iranian Journal of Science and Technology, Transaction A: Science, 45, 775-783. doi:10.1007/s40995-021-01105-4
  • Nartop, P., Çetin, B. N., & Zaidan, G. (2023). Dose-dependent effects of bio-AgNPs on Rubia tinctorum callus and root biomass. Iranian Journal of Science, 47, 337-345. doi:10.1007/s40995-023-01425-7
  • Patil, J. G., Ahire, M. L., Nitnaware, K. M., Panda, S., Bhatt, V. P., Kishor, P. B. K., & Nikam, T. D. (2013). In vitro propagation and production of cardiotonic glycosides in shoot cultures of D.purpurea L. by elicitation and precursor feeding. Applied Microbiology and Biotechnology, 97(6), 2379–239. doi:10.1007/s00253-012-4489-y
  • Perez-Alonso, N., Martin, R., Capote, A., Perez, A., Hernandez-Diaz, E. K., Rojas, L., … & Chong-Perez, B. (2018). Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Industrial Crops and Production, 116, 259-266. doi:10.1016/j.indcrop.2018.02.067
  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947–1955. doi:10.1016/S1001-0742(12)60301-5
  • Sinha, S. N., & Paul, D. (2014). Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common Indian spices. International Journal of Green Herbal Chemistry, 3(2), 401-408.
  • Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436. doi:10.1002/bit.24570
  • Tran, Q. H., Nguyen, V. Q., & Le, A-T. (2013). Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 033001. doi:10.1088/2043-6262/4/3/033001
  • Yasin, S., Liu, L., & Yao, J. (2013). Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. Journal of Fiber Bioengineering and Informatics, 6(1), 77–84. doi:10.3993/jfbi03201307
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Pınar Nartop 0000-0003-2765-6133

Özge Nur Yüksel 0000-0001-8981-6820

Dilara Özge Şencan 0000-0003-1081-8685

Project Number ---
Publication Date August 31, 2023
Submission Date July 14, 2022
Published in Issue Year 2023

Cite

APA Nartop, P., Yüksel, Ö. N., & Şencan, D. Ö. (2023). Biyolojik Yöntemle Üretilmiş Gümüş Nanopartiküllerin In Vitro Koşullarda Digitalis purpurea Kallus ve Kök Oluşumları Üzerine Etkilerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 583-590. https://doi.org/10.53433/yyufbed.1143944