Research Article
BibTex RIS Cite

Catalytic Use of Pd(II) Complex Bearing 2-(thiophen-2-yl)-1H-Benzimidazole Ligand for The Reduction / Degradation of Multiple Mixtures Containing 4-NP, RhB and MB Organic Pollutants

Year 2023, , 271 - 284, 30.04.2023
https://doi.org/10.53433/yyufbed.1167004

Abstract

In this study, the catalytic use of [Pd(L1)2]Cl2 complex is aimed for the reduction / degradation reactions of organic pollutants in water sources which pose a threat to the environment. For this purpose, 2-(thiophen-2-yl)-1H-benzimidazole ligand (L1) and its Pd(II) complex (C1) were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR, ESI-MS spectroscopic techniques. The catalytic efficiency of the C1 complex on the reduction of 4-nitro phenol compound (4-NP) and the degradation of rhodamine B (RhB), methylene blue (MB) dyes was investigated in the presence of NaBH4 in aqueous medium. The catalytic performance was examined with single solutions of these substrates (4-NP and RhB, MB dyes) and at the end of 5 minutes, over 92% conversion was observed for all three substrates. In the catalytic trials with 4-NP + RhB + MB triple substrate mixture, 84, 94 and 93% conversion values were obtained, respectively, after 5 minutes. C1 complex catalyst is very effective in the simultaneous reduction / degradation of these toxic organic compounds from aqueous environments without any competition or selectivity.

References

  • Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 576, 201-207. doi:10.1016/j.jallcom.2013.04.112
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287(2), 132162-132175. doi:10.1016/j.chemosphere.2021.132162
  • Alouani, M. E., Aleyhen, S., Achouri, M. E., & Taibi, M. (2018). Removal of cationic dye – methylene blue- from aqueous solution by adsorption on fly ash-based geopolymer. Journal of Materials and Environmental Science, 9(1), 32-46. doi:10.26872/jmes.2018.9.1.5
  • Ariannezhad, M., Pourmorteza, N., Yousefi, A., & Esperi, M. (2022). Catalytic reduction of nitroarenes and Suzuki-Miyaura reactions using Pd complex stabilized on the functionalized polymeric support. Chemical Physics Letters, 793, 139431-13945. doi:10.1016/j.cplett.2022.139431
  • Asadabadi, A. Z., Hoseini, S. J., Bahramia, M., & Nabavizadeh, S. M. (2019). Catalytic applications of b-cyclodextrin / palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 43, 6513-6522. doi:10.1039/C8NJ06449K
  • Bhat, S. A., Rashid, N., Rather, M. A., Bhat, S. A., Ingole, P. P., & Bhat, M. A. (2020). Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chemical Physics Letters, 754, 137724-137731. doi:10.1016/j.cplett.2020.137724
  • Cuerva, C., Campo, J. A., Cano, M., & Schmidt, R. (2017). Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Transactions, 46, 96-105. doi:10.1039/C6DT03521C
  • Gao, S., Hu, S., Luo, G., Sun, S., & Zhang, X. (2022). 2,2′-bipyridine palladium(II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochimica Acta, 413, 140179-140187. doi:10.1016/j.electacta.2022.140179
  • Hassani, R., Jabli, M., Kacem, Y., Marrot, J., Prim, D., & Hassine, B. B. (2015). New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes. Beilstein Journal of Organic Chemistry, 11, 1175-1186. doi:10.3762%2Fbjoc.11.132
  • Jabeen, S., Khan, M. S., Khattak, R., Zekker, I., Burlakovs, J., Rubin, S. S., Ghangrekar, M. M., Kallistova, A., Pimenov, N., Zahoor, M., & Khan, G. S. (2021). Palladium-supported Zirconia-based catalytic degradation of rhodamine-B dye from wastewater. Water, 13(11), 1522-1534. doi:10.3390/w13111522
  • Joseph, A., Vellayan, K., González, B., Vicente, M. A., & Gil, A. (2019). Effective degradation of methylene blue in aqueous solution using Pd supported Cu-doped Ti-pillared montmorillonite catalyst. Applied Clay Science, 168, 7-10. doi:10.1016/j.clay.2018.10.009
  • Kidambi, S., Dai, J., Li, J., & Bruening, M. L. (2004). Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. Journal of American Chemical Society, 126(9), 2658- 2659. doi:10.1021/ja038804c
  • Kim, J., Lee, S., Kim, S., Jung, M., Lee, H., & Han, M. S. (2020). Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+ benzimidazole complexes. Dyes and Pigments, 177, 108291-108296. doi:10.1016/j.dyepig.2020.108291
  • Kumar, A. P., Bilehal, D., Tadesse, A., Kumar, D. (2021). Photocatalytic degradation of organic dyes: Pd-g-Al2O3 and PdO-g-Al2O3 as potential photocatalysts. Royal Society of Chemistry Advances, 11, 6396–6406. doi:10.1039/D0RA10290C
  • Lee, S. J., Jung, H. J., Koutavarapu, R., Lee, S. H., Arumugam, M., Kim, J. H., & Choi, M. Y. (2019). ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Applied Surface Science, 496, 143665-143674. doi:10.1016/j.apsusc.2019.143665
  • Mejia, Y. R., & Bogireddy, N. K. R. (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. Royal Society of Chemistry Advances, 12, 18661–18675. doi:10.1039/D2RA02663E
  • Mokhtar, M. (2017). Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials, 10(7), 760-773. doi:10.3390/ma10070760
  • Nadagouda, M. N., Desai, I., Cruz, C., & Yang, D. J. (2012). Novel Pd based catalyst for the removal of organic and emerging contaminants. Royal Society of Chemistry Advances, 2, 7540–7548. doi:10.1039/C2RA20562A
  • Naraginti, S., Stephen, F. B., Radhakrishnan, A., & Sivakumar, A. (2015). Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 135, 814-819. doi:10.1016/j.saa.2014.07.070
  • Nasrollahzadeh, M., Issaabadi, Z., & Safari, R. (2019). Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): A combined theoretical (DFT) and experimental study. Separation and Purification Technology, 209, 136-144. doi:10.1016/j.seppur.2018.07.022
  • Nguyen, C. H., Fu, C. C., & Juang, R. S. (2018). Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413-427. doi:10.1016/j.jclepro.2018.08.110
  • Olagunju, M. O., Zahran, E. M., Reed, J. M., Zeynaloo E., Shukla, D., Cohn, J. L., Surnar, B., Dhar, S., Bachas, L. G., & Knecht M. R. (2021). Halide effects in BiVO4/BiOX heterostructures decorated with Pd nanoparticles for photocatalytic degradation of rhodamine B as a model organic pollutant. American Chemical Society Applied Nano Materials, 4(3), 3262-3272. doi:10.1021/acsanm.1c00481
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1-3), 70-80. doi:10.1016/j.jhazmat.2009.12.047
  • Rafiee, F., & Rezaee, M. (2022). Catalytic reduction of nitroarenes and degradation of dyes at room temperature by an efficient NNN pincer palladium catalyst based on the magnetic amino-triazole-modified chitosan. Reactive and Functional Polymers, 172, 105208-105220. doi:10.1016/j.reactfunctpolym.2022.105208
  • Rahman, Q. I., Ahmad, M., Misra, S. K., & Lohani, M. (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91, 170–174. doi:10.1016/j.matlet.2012.09.044
  • Ramadan, R. M., El-Medani, S. M., Ali, O. A. M., & Mohamed H. A. (2004). Spectroscopic and thermal studies of some palladium complexes with certain heterocyclic nitrogen ligands. Journal of Coordination Chemistry, 57(5), 373-379. doi:10.1080/00958970410001680363
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. doi:10.1016/S0960-8524(00)00080-8
  • Sahiner, N., Sagbas, S., & Aktas, N. (2015). Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(Tannic acid)–Cu ionic liquid composites. The Royal Society of Chemistry, 5, 18183-18195. doi:10.1039/C5RA00126A
  • Saputra, E., Prawiranegara, B. A., Sugesti, H., Fadli, A., Heltina, D., Utama, P. S., Azis, Y., Manawan, M., Wang, S., & Oh, W. D. (2022). High performance magnetic carbonaceous materials as a photo Fenton-like catalyst for organic pollutant removal. Journal of Water Process Engineering, 47, 102849-102859. doi:10.1016/j.jwpe.2022.102849
  • Selim, A., Kaur, S., Dar, A. H., Sartaliya, S., & Jayamurugan, G. (2020). Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. American Chemical Society Omega, 5, 22603−22613. doi:10.1021/acsomega.0c03312
  • Selvi, G., Tercan, M., Ozdemir, N., & Dayan, O. (2020). The preparation of new palladium(II) complexes with Schiff base type ligands and its impregnated Al2O3 materials: As the catalysts for degradation/reduction of organic dyes. Applied Organometallic Chemistry, 34(12), 6009-6019. doi:10.1002/aoc.6009
  • Shu, F., Wu, J., Jiang, G., Qiao, Y., Wang, Y., Wu, D., Zhong, Y., Zhang, T., Song, J., Jin, Y., Jiang, B., & Xiao, H. (2022). A hierarchically porous and hygroscopic carbon-based catalyst from natural wood for efficient catalytic reduction of industrial high-concentration 4-nitrophenol. Separation and Purification Technology, 300, 121823 - 121923. doi:10.1016/j.seppur.2022.121823
  • Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 4(9), 807-878. doi:10.1080/10643380903218376
  • Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143. doi:10.1016/j.jphotochem.2018.11.014
  • Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/S0010-8545(99)00223-4
  • Thabet, M. S., & Ismaiel, A. M. (2014). Sol-Gel γ-Al2O3 nanoparticles assessment of the removal of eosin Yellow using: adsorption, kinetic and thermodynamic parameters. Journal of Encapsulation and Adsorption Science, 6(3), 71-90. doi:10.4236/jeas.2016.63007
  • Wang, Y., Zhang, Y., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., & Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters / carbon aerogel electrode under visible light. Seperation and Purification Technology, 104, 229-237. doi:10.1016/j.seppur.2012.11.009
  • Wang, Z., Zhang, H., Li, L., Miao, S., Wu, S., Hao, X., Zhang, W., & Jia, M. (2018). Polyacrylonitrile beads supported Pd-based nanoparticles as superior catalysts for dehydrogenation of formic acid and reduction of organic dyes. Catalysis Communications, 114, 51-55. doi:10.1016/j.catcom.2018.06.004
  • Wang, W., Dai, G., Yang, H., Liu, X., Chen, X., Meng, Z., & He, Q. (2021). Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO2 nanorods. Environmental Science and Pollution Research, 29, 8242-8252. doi:10.1007/s11356-021-16276-1
  • Zhou, P., Dai, Z., Lu, T., Ru, X., Ofori, M. A., Yang, W., Hou, J., & Jin, H. (2022). Degradation of rhodamine B in wastewater by Iron-loaded attapulgite particle heterogeneous fenton catalyst. Catalysts, 12(6), 669-688. doi:10.3390/catal12060669

2-(tiyofen-2-il)-1H-Benzimidazol Ligandı Taşıyan Pd Kompleksinin 4-NP, RhB ve MB Organik Kirleticileri İçeren Çoklu Karışımların İndirgenmesi / Bozunmasında Katalitik Kullanımı

Year 2023, , 271 - 284, 30.04.2023
https://doi.org/10.53433/yyufbed.1167004

Abstract

Bu çalışmada, çevre için tehdit oluşturan organik kirleticilerin indirgeme / bozunma reaksiyonları ile su kaynaklarından uzaklaştırılması için [Pd(L1)2]Cl2 kompleksinin katalitik kullanımı amaçlanmıştır. Bu amaçla 2-(thiophen-2-yl)-1H-benzimidazole ligandı (L1) ve onun Pd(II) kompleksi (C1) sentezlenmiş ve FT-IR, 1H-NMR, 13C-NMR, ESI-MS spectroscopic teknikleri ile karakterize edilmiştir. C1 kompleksinin rhodamine B (RhB) ve methylene blue (MB) boyalarının bozunmasındaki ve 4-nitro phenol (4-NP) bileşiğinin indirgenmesindeki katalitik etkinliği NaBH4 varlığında, sulu ortamda incelenmiştir. Bu substratların (4-NP ve RhB, MB boyaları) tekli çözeltileri ile katalitik performans incelenmiş ve 5 dakikanın sonunda her üç substrat için de 92% üzerinde dönüşüm gözlenmiştir. 4-NP + RhB + MB üçlü substrat karışımı ile yapılan katalitik denemelerde 5 dakikanın sonunda sırasıyla 84, 94 ve 93% dönüşüm değerleri elde edilmiştir. Çevre için oldukça toksik bu organik bileşikleri çoklu olarak içeren sulu ortamlardan bu bileşiklerin aynı anda ayrılmasında C1 kompleks katalizörü oldukça etkindir.

References

  • Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 576, 201-207. doi:10.1016/j.jallcom.2013.04.112
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287(2), 132162-132175. doi:10.1016/j.chemosphere.2021.132162
  • Alouani, M. E., Aleyhen, S., Achouri, M. E., & Taibi, M. (2018). Removal of cationic dye – methylene blue- from aqueous solution by adsorption on fly ash-based geopolymer. Journal of Materials and Environmental Science, 9(1), 32-46. doi:10.26872/jmes.2018.9.1.5
  • Ariannezhad, M., Pourmorteza, N., Yousefi, A., & Esperi, M. (2022). Catalytic reduction of nitroarenes and Suzuki-Miyaura reactions using Pd complex stabilized on the functionalized polymeric support. Chemical Physics Letters, 793, 139431-13945. doi:10.1016/j.cplett.2022.139431
  • Asadabadi, A. Z., Hoseini, S. J., Bahramia, M., & Nabavizadeh, S. M. (2019). Catalytic applications of b-cyclodextrin / palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 43, 6513-6522. doi:10.1039/C8NJ06449K
  • Bhat, S. A., Rashid, N., Rather, M. A., Bhat, S. A., Ingole, P. P., & Bhat, M. A. (2020). Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chemical Physics Letters, 754, 137724-137731. doi:10.1016/j.cplett.2020.137724
  • Cuerva, C., Campo, J. A., Cano, M., & Schmidt, R. (2017). Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Transactions, 46, 96-105. doi:10.1039/C6DT03521C
  • Gao, S., Hu, S., Luo, G., Sun, S., & Zhang, X. (2022). 2,2′-bipyridine palladium(II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochimica Acta, 413, 140179-140187. doi:10.1016/j.electacta.2022.140179
  • Hassani, R., Jabli, M., Kacem, Y., Marrot, J., Prim, D., & Hassine, B. B. (2015). New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes. Beilstein Journal of Organic Chemistry, 11, 1175-1186. doi:10.3762%2Fbjoc.11.132
  • Jabeen, S., Khan, M. S., Khattak, R., Zekker, I., Burlakovs, J., Rubin, S. S., Ghangrekar, M. M., Kallistova, A., Pimenov, N., Zahoor, M., & Khan, G. S. (2021). Palladium-supported Zirconia-based catalytic degradation of rhodamine-B dye from wastewater. Water, 13(11), 1522-1534. doi:10.3390/w13111522
  • Joseph, A., Vellayan, K., González, B., Vicente, M. A., & Gil, A. (2019). Effective degradation of methylene blue in aqueous solution using Pd supported Cu-doped Ti-pillared montmorillonite catalyst. Applied Clay Science, 168, 7-10. doi:10.1016/j.clay.2018.10.009
  • Kidambi, S., Dai, J., Li, J., & Bruening, M. L. (2004). Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. Journal of American Chemical Society, 126(9), 2658- 2659. doi:10.1021/ja038804c
  • Kim, J., Lee, S., Kim, S., Jung, M., Lee, H., & Han, M. S. (2020). Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+ benzimidazole complexes. Dyes and Pigments, 177, 108291-108296. doi:10.1016/j.dyepig.2020.108291
  • Kumar, A. P., Bilehal, D., Tadesse, A., Kumar, D. (2021). Photocatalytic degradation of organic dyes: Pd-g-Al2O3 and PdO-g-Al2O3 as potential photocatalysts. Royal Society of Chemistry Advances, 11, 6396–6406. doi:10.1039/D0RA10290C
  • Lee, S. J., Jung, H. J., Koutavarapu, R., Lee, S. H., Arumugam, M., Kim, J. H., & Choi, M. Y. (2019). ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Applied Surface Science, 496, 143665-143674. doi:10.1016/j.apsusc.2019.143665
  • Mejia, Y. R., & Bogireddy, N. K. R. (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. Royal Society of Chemistry Advances, 12, 18661–18675. doi:10.1039/D2RA02663E
  • Mokhtar, M. (2017). Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials, 10(7), 760-773. doi:10.3390/ma10070760
  • Nadagouda, M. N., Desai, I., Cruz, C., & Yang, D. J. (2012). Novel Pd based catalyst for the removal of organic and emerging contaminants. Royal Society of Chemistry Advances, 2, 7540–7548. doi:10.1039/C2RA20562A
  • Naraginti, S., Stephen, F. B., Radhakrishnan, A., & Sivakumar, A. (2015). Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 135, 814-819. doi:10.1016/j.saa.2014.07.070
  • Nasrollahzadeh, M., Issaabadi, Z., & Safari, R. (2019). Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): A combined theoretical (DFT) and experimental study. Separation and Purification Technology, 209, 136-144. doi:10.1016/j.seppur.2018.07.022
  • Nguyen, C. H., Fu, C. C., & Juang, R. S. (2018). Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413-427. doi:10.1016/j.jclepro.2018.08.110
  • Olagunju, M. O., Zahran, E. M., Reed, J. M., Zeynaloo E., Shukla, D., Cohn, J. L., Surnar, B., Dhar, S., Bachas, L. G., & Knecht M. R. (2021). Halide effects in BiVO4/BiOX heterostructures decorated with Pd nanoparticles for photocatalytic degradation of rhodamine B as a model organic pollutant. American Chemical Society Applied Nano Materials, 4(3), 3262-3272. doi:10.1021/acsanm.1c00481
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1-3), 70-80. doi:10.1016/j.jhazmat.2009.12.047
  • Rafiee, F., & Rezaee, M. (2022). Catalytic reduction of nitroarenes and degradation of dyes at room temperature by an efficient NNN pincer palladium catalyst based on the magnetic amino-triazole-modified chitosan. Reactive and Functional Polymers, 172, 105208-105220. doi:10.1016/j.reactfunctpolym.2022.105208
  • Rahman, Q. I., Ahmad, M., Misra, S. K., & Lohani, M. (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91, 170–174. doi:10.1016/j.matlet.2012.09.044
  • Ramadan, R. M., El-Medani, S. M., Ali, O. A. M., & Mohamed H. A. (2004). Spectroscopic and thermal studies of some palladium complexes with certain heterocyclic nitrogen ligands. Journal of Coordination Chemistry, 57(5), 373-379. doi:10.1080/00958970410001680363
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. doi:10.1016/S0960-8524(00)00080-8
  • Sahiner, N., Sagbas, S., & Aktas, N. (2015). Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(Tannic acid)–Cu ionic liquid composites. The Royal Society of Chemistry, 5, 18183-18195. doi:10.1039/C5RA00126A
  • Saputra, E., Prawiranegara, B. A., Sugesti, H., Fadli, A., Heltina, D., Utama, P. S., Azis, Y., Manawan, M., Wang, S., & Oh, W. D. (2022). High performance magnetic carbonaceous materials as a photo Fenton-like catalyst for organic pollutant removal. Journal of Water Process Engineering, 47, 102849-102859. doi:10.1016/j.jwpe.2022.102849
  • Selim, A., Kaur, S., Dar, A. H., Sartaliya, S., & Jayamurugan, G. (2020). Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. American Chemical Society Omega, 5, 22603−22613. doi:10.1021/acsomega.0c03312
  • Selvi, G., Tercan, M., Ozdemir, N., & Dayan, O. (2020). The preparation of new palladium(II) complexes with Schiff base type ligands and its impregnated Al2O3 materials: As the catalysts for degradation/reduction of organic dyes. Applied Organometallic Chemistry, 34(12), 6009-6019. doi:10.1002/aoc.6009
  • Shu, F., Wu, J., Jiang, G., Qiao, Y., Wang, Y., Wu, D., Zhong, Y., Zhang, T., Song, J., Jin, Y., Jiang, B., & Xiao, H. (2022). A hierarchically porous and hygroscopic carbon-based catalyst from natural wood for efficient catalytic reduction of industrial high-concentration 4-nitrophenol. Separation and Purification Technology, 300, 121823 - 121923. doi:10.1016/j.seppur.2022.121823
  • Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 4(9), 807-878. doi:10.1080/10643380903218376
  • Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143. doi:10.1016/j.jphotochem.2018.11.014
  • Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/S0010-8545(99)00223-4
  • Thabet, M. S., & Ismaiel, A. M. (2014). Sol-Gel γ-Al2O3 nanoparticles assessment of the removal of eosin Yellow using: adsorption, kinetic and thermodynamic parameters. Journal of Encapsulation and Adsorption Science, 6(3), 71-90. doi:10.4236/jeas.2016.63007
  • Wang, Y., Zhang, Y., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., & Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters / carbon aerogel electrode under visible light. Seperation and Purification Technology, 104, 229-237. doi:10.1016/j.seppur.2012.11.009
  • Wang, Z., Zhang, H., Li, L., Miao, S., Wu, S., Hao, X., Zhang, W., & Jia, M. (2018). Polyacrylonitrile beads supported Pd-based nanoparticles as superior catalysts for dehydrogenation of formic acid and reduction of organic dyes. Catalysis Communications, 114, 51-55. doi:10.1016/j.catcom.2018.06.004
  • Wang, W., Dai, G., Yang, H., Liu, X., Chen, X., Meng, Z., & He, Q. (2021). Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO2 nanorods. Environmental Science and Pollution Research, 29, 8242-8252. doi:10.1007/s11356-021-16276-1
  • Zhou, P., Dai, Z., Lu, T., Ru, X., Ofori, M. A., Yang, W., Hou, J., & Jin, H. (2022). Degradation of rhodamine B in wastewater by Iron-loaded attapulgite particle heterogeneous fenton catalyst. Catalysts, 12(6), 669-688. doi:10.3390/catal12060669
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Melek Tercan 0000-0001-7330-6076

Early Pub Date April 29, 2023
Publication Date April 30, 2023
Submission Date August 25, 2022
Published in Issue Year 2023

Cite

APA Tercan, M. (2023). Catalytic Use of Pd(II) Complex Bearing 2-(thiophen-2-yl)-1H-Benzimidazole Ligand for The Reduction / Degradation of Multiple Mixtures Containing 4-NP, RhB and MB Organic Pollutants. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 271-284. https://doi.org/10.53433/yyufbed.1167004