MOSFET ve IGBT Tabanlı Hibrit DC-DC Boost Dönüştürücü için Yumuşak Anahtarlama
Year 2023,
, 524 - 532, 31.08.2023
İbrahim Halil Dilber
,
Hasan Üzmuş
,
Mehmet Ali Çelik
,
Naci Genç
Abstract
Bu çalışmada, yüksek gerilim kazancı için hibrit bir DC-DC yükseltici dönüştürücü önerilmiştir. Önerilen dönüştürücü analiz edilmiş ve tasarlanmıştır. Sert anahtarlamadan kaynaklanan kayıpları azaltmak için önerilen dönüştürücüye aktif yumuşak anahtarlama yöntemi uygulanmıştır. Önerilen dönüştürücünün ana anahtarı kesimdeyken, gerilim geçişi sırasında ana anahtar akımı sıfır, tersi durumda ise akım geçişi sırasında ana anahtar gerilimi sıfırdır. Böylece ana anahtarın her iki durumu için de güç kayıpları minimize edilmiştir. Farklı yükler için MOSFET ve IGBT tabanlı aktif yumuşak anahtarlamalı hibrit DC-DC yükseltici dönüştürücü benzetim çalışması yapılmıştır.
References
- Alassi, A., Al-Aswad, A., Gastli, A., Brahim, L. B., & Massoud, A. (2017). Assessment of isolated and non-isolated dc-dc converters for medium-voltage pv applications. 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahreyn. doi:10.1109/IEEEGCC.2017.8448079
- Biela, J., Badstuebner, U., & Kolar, J. W. (2009). Impact of power density maximization on efficiency of dc–dc converter systems. IEEE Transactions on Power Electronics, 24(1), 288-300. doi:10.1109/TPEL.2009.2006355
- Dao, N. D., & Lee, D. C. (2020). Passive soft-switching circuit for high power density sic-based dc-dc boost converter. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA. doi:10.1109/APEC39645.2020.9124491
- Eskandari, R., Babaei, E., Sabahi, M., & Ojaghkandi, S. R. (2020). Interleaved high step‐up zero‐voltage zero‐current switching boost DC–DC converter. IET Power Electronics, 13(1), 96-103. doi:10.1049/iet-pel.2019.0134
- Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg F., & Lehman, B. (2017). Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Transactions on Power Electronics, 32(12), 9143-9178. doi:10.1109/TPEL.2017.2652318
- Genc, N., & Koc, Y. (2017). Experimental verification of an improved soft-switching cascade boost converter. Electric Power Systems Research, 149, 1-9. doi:10.1016/j.epsr.2017.04.015
- Gopi, A., & Saravanakumar, R. (2014). High step-up isolated efficient single switch DC-DC converter for renewable energy source. Ain Shams Engineering Journal, 5(4), 1115-1127. doi:10.1016/j.asej.2014.05.001
- Guo, F., Wen, C., Mao, J., Chen J., & Song, Y. (2015). Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid. IEEE Transactions on Industrial Informatics, 11(5), 1078-1088. doi:10.1109/TII.2015.2462773
- Hai-Bo, Y., & Kim, Y. B. (2021). Compensated active disturbance rejection control for voltage regulation of a DC–DC boost converter. IET Power Electronics, 14(2), 432-441. doi:10.1049/pel2.12049
- Kobaku, T., Jeyasenthil, R., Sahoo, S., Ramchand, R., & Dragicevic, T. (2021). Quantitative feedback design-based robust pid control of voltage mode controlled dc-dc boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 286-290. doi:10.1109/TCSII.2020.2988319
- Lange, A. D. B., Soeiro, T. B., Ortmann M. S., & Heldwein, M. L. (2014). Three-level single-phase bridgeless pfc rectifiers. IEEE Transactions on Power Electronics, 30(6), 2935-2949. doi:10.1109/TPEL.2014.2322314
- Padmanaban, S., Kabalci, E., Iqbal, A., Abu-Rub,H., & Ojo, O. (2015). Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application. Engineering Science and Technology, an International Journal, 18(2), 163-170. doi:10.1016/j.jestch.2014.11.005
- Pavlovský, M., Guidi G., & Kawamura, A. (2014). Buck/boost dc–dc converter topology with soft switching in the whole operating region. IEEE Transactions on Power Electronics, 29(2), 851-862. doi:10.1109/TPEL.2013.2258358
- Rashid, M. H. (2004). Power Electronics: Circuits, Devices, and Applications (3rd Ed.). New Jersey, USA: Pearson Education.
- Rosas-Caro, J. C., Mayo-Maldonado, J. C., Valdez-Resendiz, J. E., & Valderrabano-Gonzalez, A. (2018). The resonant DC-DC multilevel boost converter. 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico. doi:10.1109/CONIELECOMP.2018.8327190
- Theunisse, T. A. F., Chai, J., Sanfelice, R. G., & Heemels, W. P. M. H. (2015). Robust global stabilization of the dc-dc boost converter via hybrid control. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 1052-1061. doi:10.1109/TCSI.2015.2413154
- Wai, R. J., & Duan, R. Y. (2005). High-efficiency DC/DC converter with high voltage gain. IEE Proceedings-Electric Power Applications, 152(4), 793-802. doi:10.1049/ip-epa:20045067
- Wang, C. M., Lin, C. H., Hsu, S. Y., Lu, C. M. & Li, J. C. (2014). Analysis, design and performance of a zero‐current‐switching pulse‐width‐modulation interleaved boost dc/dc converter. IET Power Electronics, 7(9), 2437-2445. doi:10.1049/iet-pel.2013.0510
- Yang, L., Wu, B., Zhang, X., Smedley K., & Li, G.-P. (2017). Dynamic modeling and analysis of constant on time variable frequency one-cycle control for switched-capacitor converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(3), 630-641. doi:10.1109/TCSI.2016.2618893
- Yao, Z., & Xiao, L. (2013). Family of zero‐voltage‐switching unregulated isolated step‐up DC–DC converters. IET Power Electronics, 6(5), 862-868. doi:10.1049/iet-pel.2012.0714
Soft Switching for MOSFET and IGBT Based Hybrid DC-DC Boost Converter
Year 2023,
, 524 - 532, 31.08.2023
İbrahim Halil Dilber
,
Hasan Üzmuş
,
Mehmet Ali Çelik
,
Naci Genç
Abstract
In this study, a hybrid DC-DC boost converter was proposed for high voltage gain. The proposed converter was analyzed and designed. The active soft switching method was applied to proposed converter to reduce the losses due to hard switching. While the main switch of proposed converter is turning off, the main switch current is zero during voltage transition and in the opposite case, the main switch voltage is zero during current transition. Thus, power losses for both states of the main switch were minimized. The simulation for MOSFET and IGBT based hybrid DC-DC boost converter with active soft switching were obtained for different loads.
References
- Alassi, A., Al-Aswad, A., Gastli, A., Brahim, L. B., & Massoud, A. (2017). Assessment of isolated and non-isolated dc-dc converters for medium-voltage pv applications. 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahreyn. doi:10.1109/IEEEGCC.2017.8448079
- Biela, J., Badstuebner, U., & Kolar, J. W. (2009). Impact of power density maximization on efficiency of dc–dc converter systems. IEEE Transactions on Power Electronics, 24(1), 288-300. doi:10.1109/TPEL.2009.2006355
- Dao, N. D., & Lee, D. C. (2020). Passive soft-switching circuit for high power density sic-based dc-dc boost converter. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA. doi:10.1109/APEC39645.2020.9124491
- Eskandari, R., Babaei, E., Sabahi, M., & Ojaghkandi, S. R. (2020). Interleaved high step‐up zero‐voltage zero‐current switching boost DC–DC converter. IET Power Electronics, 13(1), 96-103. doi:10.1049/iet-pel.2019.0134
- Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg F., & Lehman, B. (2017). Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Transactions on Power Electronics, 32(12), 9143-9178. doi:10.1109/TPEL.2017.2652318
- Genc, N., & Koc, Y. (2017). Experimental verification of an improved soft-switching cascade boost converter. Electric Power Systems Research, 149, 1-9. doi:10.1016/j.epsr.2017.04.015
- Gopi, A., & Saravanakumar, R. (2014). High step-up isolated efficient single switch DC-DC converter for renewable energy source. Ain Shams Engineering Journal, 5(4), 1115-1127. doi:10.1016/j.asej.2014.05.001
- Guo, F., Wen, C., Mao, J., Chen J., & Song, Y. (2015). Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid. IEEE Transactions on Industrial Informatics, 11(5), 1078-1088. doi:10.1109/TII.2015.2462773
- Hai-Bo, Y., & Kim, Y. B. (2021). Compensated active disturbance rejection control for voltage regulation of a DC–DC boost converter. IET Power Electronics, 14(2), 432-441. doi:10.1049/pel2.12049
- Kobaku, T., Jeyasenthil, R., Sahoo, S., Ramchand, R., & Dragicevic, T. (2021). Quantitative feedback design-based robust pid control of voltage mode controlled dc-dc boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 286-290. doi:10.1109/TCSII.2020.2988319
- Lange, A. D. B., Soeiro, T. B., Ortmann M. S., & Heldwein, M. L. (2014). Three-level single-phase bridgeless pfc rectifiers. IEEE Transactions on Power Electronics, 30(6), 2935-2949. doi:10.1109/TPEL.2014.2322314
- Padmanaban, S., Kabalci, E., Iqbal, A., Abu-Rub,H., & Ojo, O. (2015). Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application. Engineering Science and Technology, an International Journal, 18(2), 163-170. doi:10.1016/j.jestch.2014.11.005
- Pavlovský, M., Guidi G., & Kawamura, A. (2014). Buck/boost dc–dc converter topology with soft switching in the whole operating region. IEEE Transactions on Power Electronics, 29(2), 851-862. doi:10.1109/TPEL.2013.2258358
- Rashid, M. H. (2004). Power Electronics: Circuits, Devices, and Applications (3rd Ed.). New Jersey, USA: Pearson Education.
- Rosas-Caro, J. C., Mayo-Maldonado, J. C., Valdez-Resendiz, J. E., & Valderrabano-Gonzalez, A. (2018). The resonant DC-DC multilevel boost converter. 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico. doi:10.1109/CONIELECOMP.2018.8327190
- Theunisse, T. A. F., Chai, J., Sanfelice, R. G., & Heemels, W. P. M. H. (2015). Robust global stabilization of the dc-dc boost converter via hybrid control. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 1052-1061. doi:10.1109/TCSI.2015.2413154
- Wai, R. J., & Duan, R. Y. (2005). High-efficiency DC/DC converter with high voltage gain. IEE Proceedings-Electric Power Applications, 152(4), 793-802. doi:10.1049/ip-epa:20045067
- Wang, C. M., Lin, C. H., Hsu, S. Y., Lu, C. M. & Li, J. C. (2014). Analysis, design and performance of a zero‐current‐switching pulse‐width‐modulation interleaved boost dc/dc converter. IET Power Electronics, 7(9), 2437-2445. doi:10.1049/iet-pel.2013.0510
- Yang, L., Wu, B., Zhang, X., Smedley K., & Li, G.-P. (2017). Dynamic modeling and analysis of constant on time variable frequency one-cycle control for switched-capacitor converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(3), 630-641. doi:10.1109/TCSI.2016.2618893
- Yao, Z., & Xiao, L. (2013). Family of zero‐voltage‐switching unregulated isolated step‐up DC–DC converters. IET Power Electronics, 6(5), 862-868. doi:10.1049/iet-pel.2012.0714