Research Article
BibTex RIS Cite

Investigation of Thermal Insulation Performance at Different Coating Thicknesses by Using Finite Volume Method

Year 2023, , 641 - 650, 31.08.2023
https://doi.org/10.53433/yyufbed.1196361

Abstract

In this study, the effect of coating thickness and thermal property on the temperature distribution of an internal combustion diesel piston was investigated numerically. A piston was modelled in three-dimensional, and then a grid independency test was performed. The optimum element number was selected without losing computational accuracy. The thickness values were considered as 250, 500, and 750 μm. Tungsten Carbide (WC) and Zirconia (ZrO2) were used as coating material. Convective heat loads were applied as boundary conditions. Temperature values in different locations were used to evaluate the thermal performance of the coating layer. The numerical results showed that WC doesn’t have a significant effect by the mean of thermal insulation and WC-coated piston top surface temperature is like uncoated temperature even with the higher thickness values. However, ZrO2 has a better performance as thermal insulation material, and its effectiveness increases with higher thickness values.

References

  • Aydin, S., Sayin, C., & Aydin, H. (2015). Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating. Applied Thermal Engineering, 80, 212-219. doi:10.1016/j.applthermaleng.2015.01.061
  • Baldissera, P., & Delprete, C. (2018). Finite element thermo-structural methodology for investigating diesel engine pistons with thermal barrier coating. SAE International Journal of Engines, 12(1), 69-78. doi:10.4271/03-12-01-0006
  • Buyukkaya, E., & Cerit, M. (2007). Thermal analysis of a ceramic coating diesel engine piston using 3 D finite element method. Surface and Coatings Technology, 202(2), 398-402. doi:10.1016/j.surfcoat.2007.06.006
  • Cerit, M. (2011). Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine. Surface and Coatings Technology, 205(11), 3499–3505. doi:10.1016/j.surfcoat.2010.12.019
  • Cerit, M., & Coban, M. (2014). Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. International Journal of Thermal Sciences, 77, 11-18. doi:10.1016/j.ijthermalsci.2013.10.009
  • Dhinesh, B., Maria Ambrose Raj, Y., Kalaiselvan, C., & KrishnaMoorthy, R. (2018). A numerical and experimental assessment of a coated diesel engine powered by high-performance nano biofuel. Energy Conversion and Management, 171, 815-824. doi:10.1016/j.enconman.2018.06.039
  • Gehlot, R., & Tripathi, B. (2016). Thermal analysis of holes created on ceramic coating for diesel engine piston. Case Studies in Thermal Engineering, 8, 291-299. doi:10.1016/j.csite.2016.08.008
  • Gok, M. G., & Karabas, M. (2022). Production of Re doped La2Zr2O7 based TBCs and numerical analysis of their use on IC engine piston surface. Ceramics International, 48(8), 11173-11180. doi:10.1016/j.ceramint.2021.12.337
  • Özel, S. (2009). Alüminyum alaşımı ve bronzu yüzeyine oksit ve karbür bileşiklerinin plazma sprey yöntemiyle kaplanmasının araştırılması. (PhD), Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye.
  • Powell, T., O’Donnell, R., Hoffman, M., & Filipi, Z. (2017). Impact of a Yttria-Stabilized zirconia thermal barrier coating on HCCI engine combustion, Emissions, and Efficiency. Journal of Engineering for Gas Turbines and Power, 139(11), 111504. doi:10.1115/1.4036577
  • Ramasamy, N., Kalam, M. A., Varman, M., & Teoh, Y. H. (2021). Effect of thermal barrier coating on the performance and emissions of diesel engine operated with conventional diesel and palm oil biodiesel. Coatings, 11(6), 692. doi:10.3390/coatings11060692
  • Shen, X., Nie, X., & Hu, H. (2012). Numerical analysis of thermal distributions in aluminum engine cylinders influenced by alumina ceramic coatings. Numerical Heat Transfer, Part A: Applications, 62(6), 463-478. doi:10.1080/10407782.2012.703095
  • Vural, E. (2015). Thermal analysis of Al2O3, TiO2 and SiC coatings combustion of a diesel engine piston 3D finite element method. International Journal of Scientific and Technological Research, 1(6), 20–30.
  • Wang, Y., Ma, T., Liu, L., & Yao, M. (2021). Numerical investigation of the effect of thermal barrier coating on combustion and emissions in a diesel engine. Applied Thermal Engineering, 186, 116497. doi:10.1016/j.applthermaleng.2020.116497

Farklı Kaplama Kalınlıklarında Isıl Yalıtım Performansın Sonlu Hacim Metodu ile İncelenmesi

Year 2023, , 641 - 650, 31.08.2023
https://doi.org/10.53433/yyufbed.1196361

Abstract

Bu çalışmada, kaplama kalınlığının ve ısıl özelliğinin, içten yanmalı bir dizel motor pistonunun sıcaklık dağılımına olan etkisi sayısal olarak incelenmiştir. Piston üç boyutlu olarak modellenmiş ve ardından ağdan bağımsızlık çalışması yapılmıştır. Hesaplama hassasiyetini düşürmeden, en uygun eleman sayısı seçilmiştir. 250, 500 ve 750 μm olmak üzere üç farklı kaplama kalınlığı çalışılmıştır. Kaplama malzemesi olarak ise Tungsten Karbür (WC) ve Zirkonya (ZrO2) kullanılmıştır. Sınır şartları olarak taşınım ısıl yükleri uygulanmıştır. Kaplama tabakasının ısıl performansını değerlendirmek için farklı konumlardaki sıcaklık değerleri kullanılmıştır. Sayısal sonuçlar göstermiştir ki, WC kaplamasının ısıl yalıtım üzerinde kayda değer bir etkisi yoktur ve kaplama yüzeyinin üzerindeki sıcaklık değerleri farklı kaplama kalınlıklarında bile kaplama yapılmayan piston ile aynıdır. Fakat, ZrO2 ısıl yalıtım malzemesi olarak çok daha iyi bir performansa sahiptir ve bu durum artan kalınlık değerleri ile artmaktadır.

References

  • Aydin, S., Sayin, C., & Aydin, H. (2015). Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating. Applied Thermal Engineering, 80, 212-219. doi:10.1016/j.applthermaleng.2015.01.061
  • Baldissera, P., & Delprete, C. (2018). Finite element thermo-structural methodology for investigating diesel engine pistons with thermal barrier coating. SAE International Journal of Engines, 12(1), 69-78. doi:10.4271/03-12-01-0006
  • Buyukkaya, E., & Cerit, M. (2007). Thermal analysis of a ceramic coating diesel engine piston using 3 D finite element method. Surface and Coatings Technology, 202(2), 398-402. doi:10.1016/j.surfcoat.2007.06.006
  • Cerit, M. (2011). Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine. Surface and Coatings Technology, 205(11), 3499–3505. doi:10.1016/j.surfcoat.2010.12.019
  • Cerit, M., & Coban, M. (2014). Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. International Journal of Thermal Sciences, 77, 11-18. doi:10.1016/j.ijthermalsci.2013.10.009
  • Dhinesh, B., Maria Ambrose Raj, Y., Kalaiselvan, C., & KrishnaMoorthy, R. (2018). A numerical and experimental assessment of a coated diesel engine powered by high-performance nano biofuel. Energy Conversion and Management, 171, 815-824. doi:10.1016/j.enconman.2018.06.039
  • Gehlot, R., & Tripathi, B. (2016). Thermal analysis of holes created on ceramic coating for diesel engine piston. Case Studies in Thermal Engineering, 8, 291-299. doi:10.1016/j.csite.2016.08.008
  • Gok, M. G., & Karabas, M. (2022). Production of Re doped La2Zr2O7 based TBCs and numerical analysis of their use on IC engine piston surface. Ceramics International, 48(8), 11173-11180. doi:10.1016/j.ceramint.2021.12.337
  • Özel, S. (2009). Alüminyum alaşımı ve bronzu yüzeyine oksit ve karbür bileşiklerinin plazma sprey yöntemiyle kaplanmasının araştırılması. (PhD), Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye.
  • Powell, T., O’Donnell, R., Hoffman, M., & Filipi, Z. (2017). Impact of a Yttria-Stabilized zirconia thermal barrier coating on HCCI engine combustion, Emissions, and Efficiency. Journal of Engineering for Gas Turbines and Power, 139(11), 111504. doi:10.1115/1.4036577
  • Ramasamy, N., Kalam, M. A., Varman, M., & Teoh, Y. H. (2021). Effect of thermal barrier coating on the performance and emissions of diesel engine operated with conventional diesel and palm oil biodiesel. Coatings, 11(6), 692. doi:10.3390/coatings11060692
  • Shen, X., Nie, X., & Hu, H. (2012). Numerical analysis of thermal distributions in aluminum engine cylinders influenced by alumina ceramic coatings. Numerical Heat Transfer, Part A: Applications, 62(6), 463-478. doi:10.1080/10407782.2012.703095
  • Vural, E. (2015). Thermal analysis of Al2O3, TiO2 and SiC coatings combustion of a diesel engine piston 3D finite element method. International Journal of Scientific and Technological Research, 1(6), 20–30.
  • Wang, Y., Ma, T., Liu, L., & Yao, M. (2021). Numerical investigation of the effect of thermal barrier coating on combustion and emissions in a diesel engine. Applied Thermal Engineering, 186, 116497. doi:10.1016/j.applthermaleng.2020.116497
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Bahadır Erman Yüce 0000-0002-2432-964X

Serkan Özel 0000-0003-0700-1295

Publication Date August 31, 2023
Submission Date October 31, 2022
Published in Issue Year 2023

Cite

APA Yüce, B. E., & Özel, S. (2023). Investigation of Thermal Insulation Performance at Different Coating Thicknesses by Using Finite Volume Method. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 641-650. https://doi.org/10.53433/yyufbed.1196361